OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1069–1078

Linearly damped modes at gap edges of photonic crystals

Daniel Maystre and Jean-Paul Hugonin  »View Author Affiliations

JOSA A, Vol. 27, Issue 5, pp. 1069-1078 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (473 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is shown that for one-dimensional dielectric photonic crystals, the Bloch modes, a vital tool in the analysis of these structures, cannot provide a complete representation of the electromagnetic field at the edges of bandgaps. On these points, the couple of Bloch modes representing the propagation on both sides of the crystal reduces to a single one, with a stationary field, and a complete representation of the field inside the crystal illuminated by a plane wave must include a linearly damped mode (LDM), the amplitude of which behaves linearly in space. The theory of transfer matrices and the use of basic properties of the field allow a precise description of the LDM from a few parameters. An extension to two-dimensional photonic crystals is proposed.

© 2010 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(310.6860) Thin films : Thin films, optical properties
(230.5298) Optical devices : Photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Physical Optics

Original Manuscript: November 9, 2009
Revised Manuscript: March 3, 2010
Manuscript Accepted: March 6, 2010
Published: April 15, 2010

Daniel Maystre and Jean-Paul Hugonin, "Linearly damped modes at gap edges of photonic crystals," J. Opt. Soc. Am. A 27, 1069-1078 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41, 173–194 (1994). [CrossRef]
  2. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton Univ. Press, 1995).
  3. C. Soukoulis, Photonic Band Gap Materials (Kluwer, 1996).
  4. J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals, 2nd ed. (Springer, 2008).
  5. J. P. Dowling and C. M. Bowden, “Anomalous index of refraction in photonic bandgap material,” J. Mod. Opt. 41, 345–351 (1994). [CrossRef]
  6. R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Mod. Opt. 34, 1589–1617 (1987). [CrossRef]
  7. G. W. Milton, N.-A. P. Nicorovici, and R. C. McPhedran, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49, 8479–8482 (1994). [CrossRef]
  8. S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,” Opt. Lett. 21, 1771–1773 (1996). [CrossRef] [PubMed]
  9. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998). [CrossRef]
  10. D. Maystre, “Electromagnetic analysis of ultra-refraction and negative refraction,” J. Mod. Opt. 50, 1431–1444 (2003).
  11. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209–229 (1994). [CrossRef]
  12. S. Enoch, G. Tayeb, and D. Maystre, “Numerical evidence of ultrarefractive optics in photonic crystals,” Opt. Commun. 161, 171–176 (1999). [CrossRef]
  13. B. Gralak, S. Enoch, and G. Tayeb, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A 17, 1012–1020 (2000). [CrossRef]
  14. V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  15. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  16. D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?” J. Opt. Soc. Am. A 21, 122–131 (2004). [CrossRef]
  17. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006). [CrossRef] [PubMed]
  18. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997). [CrossRef] [PubMed]
  19. M. Burns, J.-M. Fournier, and J. Golovshenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989). [CrossRef] [PubMed]
  20. M. Burns, J.-M. Fournier, and J. Golovshenko, “Lateral binding effect, due to particle’s optical interaction,” Science 249, 749–754 (1990). [CrossRef] [PubMed]
  21. T. Grzegorczyk, B. Kemp, and J. Kong, “Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field,” J. Opt. Soc. Am. A 23, 2324–2330 (2006). [CrossRef]
  22. T. Grzegorczyk, B. Kemp, and J. Kong, “Stable optical trapping based on optical binding forces,” Phys. Rev. Lett. 96, 113903 (2006). [CrossRef] [PubMed]
  23. M. Antonoyiannakis and J. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev. B 60, 2363–2374 (1999). [CrossRef]
  24. D. Maystre and P. Vincent, “Making photonic crystals using trapping and binding optical forces on particles,” J. Opt. A, Pure Appl. Opt. 8, 1059–1066 (2006). [CrossRef]
  25. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef] [PubMed]
  26. D. Maystre and P. Vincent, “Phenomenological study of binding in optically trapped photonic crystals,” J. Opt. Soc. Am. A 24, 2383–2393 (2007). [CrossRef]
  27. L. Ferrier, X. Letartre, P. Rojo Romeo, E. Drouard, P. Viktorovitch, and J. M. Fedeli, “Slow Bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express 16, 3136–3145 (2008). [CrossRef] [PubMed]
  28. S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, “Microlasers based on effective index confined slow light modes in photonic crystal waveguides,” Opt. Express 16, 6331–6339 (2008). [CrossRef] [PubMed]
  29. A. A. Cottey, “Solutions of Schrödinger equation at a band edge in a one-dimensional crystal,” J. Phys. C 5, 2583–2590 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited