OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1079–1082

Inverse design mechanism of cylindrical cloaks without knowledge of the required coordinate transformation

Cheng-Wei Qiu, Andrey Novitsky, and Lei Gao  »View Author Affiliations


JOSA A, Vol. 27, Issue 5, pp. 1079-1082 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001079


View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An inverse way to define the parameters of cylindrical cloaks is developed, in which the cloaking parameters can be independently obtained without any knowledge of the corresponding coordinate transformation. The required parameters are derived in terms of the integral form of cloaking generators, which are very general and allow us to examine the significance of the parametric profiles. The validity of such inverse way and the invisibility characteristics are presented in full-wave numerical simulation of plane wave scattering by cloaked cylinders.

© 2010 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(260.2110) Physical optics : Electromagnetic optics
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Optical Devices

History
Original Manuscript: February 16, 2010
Revised Manuscript: March 17, 2010
Manuscript Accepted: March 21, 2010
Published: April 15, 2010

Citation
Cheng-Wei Qiu, Andrey Novitsky, and Lei Gao, "Inverse design mechanism of cylindrical cloaks without knowledge of the required coordinate transformation," J. Opt. Soc. Am. A 27, 1079-1082 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-5-1079


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  3. A. Greenleaf, M. Lassas, and G. Uhlmann, “Anisotropic conductivities that cannot be detected by EIT,” Physiol. Meas 24, 413–419 (2003). [CrossRef] [PubMed]
  4. U. Leonhardt, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006). [CrossRef]
  5. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007). [CrossRef]
  6. D. Torrent and J. Sanchez-Dehesa, “Acoustic cloaking in two dimensions: a feasible approach,” New J. Phys. 10, 063015 (2008). [CrossRef]
  7. M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phys. Rev. Lett. 101, 134501 (2008). [CrossRef] [PubMed]
  8. G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8, 248 (2006). [CrossRef]
  9. D. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92, 013505 (2008). [CrossRef]
  10. W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical–cylindrical invisible cloaking,” J. Phys. D: Appl. Phys. 41, 085504 (2008). [CrossRef]
  11. A. Nicolet, F. Zolla, and S. Guenneau, “Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section,” Opt. Lett. 33, 1584–1586 (2008). [CrossRef] [PubMed]
  12. J. Zhang, Y. Luo, H. Chen, and B.-I. Wu, “Cloak of arbitrary shape,” J. Opt. Soc. Am. B 25, 1776–1779 (2008). [CrossRef]
  13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  14. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009). [CrossRef]
  15. H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007). [CrossRef] [PubMed]
  16. C.-W. Qiu, L. W. Li, T. S. Yeo, and S. Zouhdi, “Scattering by rotationally symmetric anisotropic spheres: Potential formulation and parametric studies,” Phys. Rev. E 75, 026609 (2007). [CrossRef]
  17. R. Weder, “The boundary conditions for point transformed electromagnetic invisibility cloaks,” J. Phys. A: Math. Theor. 41, 065207 (2008). [CrossRef]
  18. C. W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E 79, 047602 (2009). [CrossRef]
  19. C. W. Qiu, L. Hu, B. Zhang, B. Wu, S. Johnson, and J. Joannopoulos, “Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coating,” Opt. Express 17, 13467–13478 (2009). [CrossRef] [PubMed]
  20. L. S. Dolin, “On the possibility of comparing three-dimensional electromagnetic systems with non-uniform anisotropic fillings,” Izv. Vyssh. Uchebn. Zaved. Fiz. 4, 964–967 (1961).
  21. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009). [CrossRef]
  22. M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007). [CrossRef]
  23. B. Zhang, H. Chen, and B.-I. Wu, “Limitations of high-order transformation and incident angle on simplified invisibility cloaks,” Opt. Express 16, 14655–14660 (2008). [CrossRef] [PubMed]
  24. B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101 (2007). [CrossRef]
  25. B. I. Popa and S. A. Cummer, “Cloaking with optimized homogeneous anisotropic layers,” Phys. Rev. A 79, 023806 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited