OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1120–1126

Degree of paraxiality of a partially coherent field

Fei Wang, Yangjian Cai, and Olga Korotkova  »View Author Affiliations


JOSA A, Vol. 27, Issue 5, pp. 1120-1126 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001120


View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We extend the concept of the degree of paraxiality, introduced recently for monochromatic fields, to the domain of stochastic fields. As an example we analytically evaluate the degree of paraxiality for a broad class of model stochastic fields, the Gaussian Schell-model fields, without and with truncation and twist phase. The dependence of the degree of paraxiality on the size and the state of coherence of the source as well as on the truncation parameter and the magnitude of twist phase is analyzed by a number of numerical examples.

© 2010 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.1670) Coherence and statistical optics : Coherent optical effects
(050.1940) Diffraction and gratings : Diffraction

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: December 17, 2009
Manuscript Accepted: February 26, 2010
Published: April 22, 2010

Citation
Fei Wang, Yangjian Cai, and Olga Korotkova, "Degree of paraxiality of a partially coherent field," J. Opt. Soc. Am. A 27, 1120-1126 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-5-1120


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).
  2. E. Wolf and E. Collett, “Partially coherent sources which produce same far-field intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978). [CrossRef]
  3. P. D. Santis, F. Gori, G. Guattari, and C. Palma, “An example of a Collett-Wolf source,” Opt. Commun. 29, 256–260 (1979). [CrossRef]
  4. F. Gori, “Collet-Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980). [CrossRef]
  5. A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41, 383–387 (1982). [CrossRef]
  6. F. Wang and Y. Cai, “Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics,” J. Opt. Soc. Am. A 24, 1937–1944 (2007). [CrossRef]
  7. E. Tervonen, A. T. Friberg, and J. Turunen, “Gaussian Schell-model beams generated with synthetic acousto-optic holograms,” J. Opt. Soc. Am. A 9, 796–803 (1992). [CrossRef]
  8. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implication for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002). [CrossRef]
  9. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998). [CrossRef]
  10. Y. Cai and S. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005). [CrossRef]
  11. N. A. Ansari and M. S. Zubairy, “Second-harmonic generation by a Gaussian Schell-model source,” Opt. Commun. 59, 385–390 (1986). [CrossRef]
  12. R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993). [CrossRef]
  13. R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10, 2008–2016 (1993). [CrossRef]
  14. K. Sundar, R. Simon, and N. Mukunda, “Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10, 2017–2023 (1993). [CrossRef]
  15. D. Ambrosini, V. Bagini, F. Gori, and M. Santarsiero, “Twisted Gaussian Schell-model beams: a superposition model,” J. Mod. Opt. 41, 1391–1399 (1994). [CrossRef]
  16. A. T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994). [CrossRef]
  17. R. Simon, A. T. Friberg, and E. Wolf, “Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems,” Pure Appl. Opt. 5, 331–343 (1996). [CrossRef]
  18. R. Simon and N. Mukunda, “Twist phase in Gaussian-beam optics,” J. Opt. Soc. Am. A 15, 2373–2382 (1998). [CrossRef]
  19. R. Simon and N. Mukunda, “Optical phase space, Wigner representation, and invariant quality parameters,” J. Opt. Soc. Am. A 17, 2440–2463 (2000). [CrossRef]
  20. J. Serna and J. M. Movilla, “Orbital angular momentum of partially coherent beams,” Opt. Lett. 26, 405–406 (2001). [CrossRef]
  21. Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27, 216–218 (2002). [CrossRef]
  22. Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89, 041117 (2006). [CrossRef]
  23. Y. Cai and L. Hu, “Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams through an apertured astigmatic optical system,” Opt. Lett. 31, 685–687 (2006). [CrossRef] [PubMed]
  24. Q. Lin and Y. Cai, “Fractional Fourier transform for partially coherent Gaussian Schell-model beams,” Opt. Lett. 27, 1672–1674 (2002). [CrossRef]
  25. Y. Cai and U. Peschel, “Second-harmonic generation by an astigmatic partially coherent beam,” Opt. Express 15, 15480–15492 (2007). [CrossRef] [PubMed]
  26. Y. Cai, Q. Lin, and O. Korotkova, “Ghost imaging with twisted Gaussian Schell-model beam,” Opt. Express 17, 2450–2464 (2009). [CrossRef]
  27. X. Liu and J. Pu, “Focal shift and focal switch of partially coherent light in dual-focus systems,” Opt. Commun. 252, 262–267 (2008). [CrossRef]
  28. J. Pu and S. Nemoto, “Spectral shifts and spectral switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407–1411 (2000). [CrossRef]
  29. F. Wang, Y. Cai, and Q. Lin, “Experimental observation of truncated fractional Fourier transform for a partially coherent Gaussian Schell-model beam,” J. Opt. Soc. Am. A 25, 2001–2010 (2008). [CrossRef]
  30. F. Wang, Y. Cai, and Olga Korotkova, “Experimental observation of focal shifts in focused partially coherent beams,” Opt. Commun. 282, 3408–3412 (2009). [CrossRef]
  31. C. J. R. Sheppard and S. Saghafi, “Beam modes beyond the paraxial approximation: A scalar treatment” Phys. Rev. A 57, 2971–2979 (1998). [CrossRef]
  32. C. J. R. Sheppard and S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24, 1543–1545 (1999). [CrossRef]
  33. C. J. R. Sheppard and S. Saghafi, “Electromagnetic Gaussian beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 16, 1381–1386 (1999). [CrossRef]
  34. C. J. R. Sheppard, “High aperture beams,” J. Opt. Soc. Am. A 18, 1579–1587 (2001). [CrossRef]
  35. G. Zhou, “Analytical vectorial structure of Laguerre-Gaussian beam in the far field,” Opt. Lett. 31, 2616–2618 (2006). [CrossRef] [PubMed]
  36. G. Zhou, “The analytical vectorial structure of a nonparaxial Gaussian beam close to the source,” Opt. Express 16, 3504–3514 (2008). [CrossRef] [PubMed]
  37. Z. Mei and J. Gu, “Comparative studies of paraxial and nonparaxial vectorial elegant Laguerre-Gaussian beams,” Opt. Express 17, 14865–14871 (2009). [CrossRef] [PubMed]
  38. O. Gawhary and S. Severini, “Degree of paraxiality for monochromatic light beams,” Opt. Lett. 33, 1360–1362 (2008). [CrossRef] [PubMed]
  39. O. Gawhary and S. Severini, “Dependence of the degree of paraxiality on field correlations,” Opt. Lett. 33, 1866–1868 (2008). [CrossRef] [PubMed]
  40. G. Zhou, “Change of the paraxiality of a Gassian beam diffracted by a circular aperture,” Opt. Express 17, 8417–8422 (2009). [CrossRef] [PubMed]
  41. K. Lindfors, T. Setala, M. Kaivola, and A. T. Friberg, “Degree of polarization in tightly focused optical fields,” J. Opt. Soc. Am. A 22, 561–568 (2005). [CrossRef]
  42. Z. Zhang, J. Pu, and X. Wang, “Focusing of partially coherent Bessel-Gaussian beams through a high numerical-aperture objective,” Opt. Lett. 33, 49–51 (2008). [CrossRef]
  43. B. Chen, Z. Zhang, and J. Pu, “Tight focusing of partially coherent and circularly polarized vortex beams,” J. Opt. Soc. Am. A 26, 862–869 (2009). [CrossRef]
  44. E. Marchand and E. Wolf, “Angular correlation and the far-zone behavior of partially coherent fields,” J. Opt. Soc. Am. 62, 379–385 (1972). [CrossRef]
  45. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1988).
  46. A. Erdelyi, W. Magnus, and F. Oberhettinger, Tables of Integral Transforms (McGraw-Hill, 1954).
  47. J. J. Wen and M. A. Breazeale, “A diffraction beam field expressed as the superposition of Gaussian beams,” J. Acoust. Soc. Am. 83, 1752–1756 (1988). [CrossRef]
  48. D. Ding and X. Liu, “Approximate description for Bessel, Bessel-Gauss, and Gaussian beams with finite aperture,” J. Opt. Soc. Am. A 16, 1286–1293 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited