OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1171–1184

Statistical study of radiation loss from planar optical waveguides: The curvilinear coordinate method and the small perturbation method

Saddek Afifi and Richard Dusséaux  »View Author Affiliations


JOSA A, Vol. 27, Issue 5, pp. 1171-1184 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001171


View Full Text Article

Enhanced HTML    Acrobat PDF (634 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This article presents an original method for the theoretical analysis of the intensity radiated by a dielectric waveguide with rough walls. The method is based on Maxwell’s equations under their covariant form written in nonorthogonal coordinate systems adapted to the geometry of the waveguide. The solutions are found by using a perturbation method starting from a guide with smooth walls. The statistical characteristics of the radiant intensity, the mean value, and the probability density function are analytically determined.

© 2010 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(240.5770) Optics at surfaces : Roughness
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation
(350.5610) Other areas of optics : Radiation

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 10, 2010
Manuscript Accepted: March 17, 2010
Published: April 30, 2010

Citation
Saddek Afifi and Richard Dusséaux, "Statistical study of radiation loss from planar optical waveguides: The curvilinear coordinate method and the small perturbation method," J. Opt. Soc. Am. A 27, 1171-1184 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-5-1171


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Marcuse, “Radiation losses of dielectric waveguides in terms of the power spectrum of the wall distortion function,” Bell Syst. Tech. J. 48, 3233–3242 (1969).
  2. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, 1972).
  3. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).
  4. D. G. Hall, “Scattering of optical guided waves by waveguide surface roughness: A three-dimensional treatment,” Opt. Lett. 6, 601–603 (1981). [CrossRef] [PubMed]
  5. D. G. Hall, “In-plane scattering in planar optical waveguides: refractive-index fluctuations and surface roughness,” J. Opt. Soc. Am. A 2, 747–752 (1985). [CrossRef]
  6. G. H. Ames and D. G. Hall, “Attenuation in planar optical waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 19, 845–853 (1983). [CrossRef]
  7. J. P. R. Lacey and F. P. Payne, “Radiation loss from planer waveguides with random wall imperfections,” IEE Proc.-J: Optoelectron. 137, 282–288 (1990). [CrossRef]
  8. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994). [CrossRef]
  9. P. Lalanne and G. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  10. J. M. Elson, “Propagation in planar waveguides and the effects of wall roughness,” Opt. Express 9, 461–475 (2001). [CrossRef] [PubMed]
  11. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  12. J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235–241 (1980). [CrossRef]
  13. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings, a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982). [CrossRef]
  14. S. Afifi, “Propagation et diffraction d’une onde électromagnétique dans des structures apériodiques,” Ph.D. dissertation (Université Blaise Pascal, 1986).
  15. L. Li, “Multilayer-coated diffraction gratings: differential method of Chandezon revisited,” J. Opt. Soc. Am. A 11, 2816–2828 (1994). [CrossRef]
  16. N. P. K. Cotter, T. W. Preist, and J. R. Sambles, “Scattering-matrix approach to multilayer diffraction,” J. Opt. Soc. Am. A 12, 1097–1103 (1995). [CrossRef]
  17. G. Granet, J. P. Plumey, and J. Chandezon, “Scattering by a periodically corrugated dielectric layer with non-identical faces,” Pure Appl. Opt. 4, 1–5 (1995). [CrossRef]
  18. G. Granet, “Analysis of diffraction by surface-relief crossed grating with use of Chandezon method: application to multilayer crossed grating,” J. Opt. Soc. Am. A 15, 1121–1131 (1998). [CrossRef]
  19. E. Marcelin, “Application des équations de Maxwell covariantes à l’étude de la propagation dans les guides d’ondes coudés,” Ph.D. dissertation (Université Blaise Pascal, 1992).
  20. R. Dusséaux, P. Cornet, and P. Chambelin, “Etude de transformateurs plan-E dans un système de coordonnées non orthogonales,” Ann. Telecommun. 5–6, 311–323 (1999).
  21. R. Dusséaux and C. Faure, “Analyse de composants plan-E symétriques en guides d’onde à section rectangulaire,” Ann. Telecommun. 9–10, 834–855 (2002).
  22. R. Dusséaux and C. Faure, “Telegraphist’s equations for rectangular waveguides and analysis in nonorthogonal coordinates,” Prog. Electromagn. Res. PIER 88, 53–71 (2008). [CrossRef]
  23. F. Ladouceur, J. D. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc.: Optoelectron. 141, 242–246 (1994). [CrossRef]
  24. T. M. Elfouhaily and C. A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14, R1–R40 (2004). [CrossRef]
  25. R. Dusséaux, C. Faure, J. Chandezon, and F. Molinet, “New perturbation theory of diffraction gratings and its application to the study of ghosts,” J. Opt. Soc. Am. A 12, 1271–1282 (1995). [CrossRef]
  26. S. Afifi and M. Diaf, “Scattering by random rough surfaces: study of direct and inverse problem,” Opt. Commun. 265, 11–17 (2006). [CrossRef]
  27. R. Dusséaux and R. de Oliveira, “Effect of the illumination length on the statistical distribution of the field scattered from one-dimensional random rough surfaces: analytical formulae derived from the small perturbation method,” Waves Random Complex Media 17, 305–320 (2007). [CrossRef]
  28. S. Afifi and R. Dusséaux, “Statistical study of the radiation losses due to surface roughness for a dielectric slab deposited on a metal substrate,” Opt. Commun. 281, 4663–4670 (2008). [CrossRef]
  29. S. Afifi, R. Dusséaux, and R. de Oliveira, “Statistical distribution of the field scattered by rough layered interfaces: formulae derived from the small perturbation method,” Waves Random Complex Media 20, 1–22 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited