OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1219–1231

Modeling the intensity and polarization response of planar bolometric detectors

Christopher N. Thomas, Stafford Withington, David T. Chuss, Edward J. Wollack, and S. Harvey Moseley  »View Author Affiliations

JOSA A, Vol. 27, Issue 5, pp. 1219-1231 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (335 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behavior precisely. We have studied the intensity and polarization response of free-space bolometers and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behavior. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behavior. The ability to model easily the intensity, polarization, and straylight characteristics of electrically small detectors will be of great value when designing high-performance polarimetric imaging arrays.

© 2010 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(110.4980) Imaging systems : Partial coherence in imaging
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(040.2235) Detectors : Far infrared or terahertz

ToC Category:

Original Manuscript: October 6, 2009
Revised Manuscript: March 12, 2010
Manuscript Accepted: March 15, 2010
Published: April 30, 2010

Christopher N. Thomas, Stafford Withington, David T. Chuss, Edward J. Wollack, and S. Harvey Moseley, "Modeling the intensity and polarization response of planar bolometric detectors," J. Opt. Soc. Am. A 27, 1219-1231 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Audley, R. Barker, M. Crane, R. Dace, D. Glowacka, D. Goldie, A. Lasenby, H. Stevenson, V. Tsaneva, S. Withington, P. Grimes, B. Johnson, G. Yassin, L. Piccirillo, G. Pisano, W. Duncan, G. Hilton, K. Irwin, C. Reintsema, and M. Halpern, “TES imaging array technology for CLOVER,” Proc. SPIE 6275, 24–32 (2006).
  2. J. Ruhl, P. Ade, J. Carlstrom, H. Cho, T. Crawford, M. Dobbs, C. Greer, W. Holzapfel, T. Lanting, A. Lee, N. Halverson, E. Leitch, J. Leong, W. Lu, M. Lueker, J. Mehl, S. Meyer, J. Mohr, S. Padin, T. Plagge, C. Pryke, M. Runyan, D. Schwan, M. Sharp, H. Spieler, Z. Staniszewski, and A. Stark, “The south pole telescope,” Proc. SPIE 5498, 11–29 (2004). [CrossRef]
  3. M. Audley, W. Holland, W. Duncan, D. Atkinson, M. Cliffe, M. Ellis, X. Gao, D. Gostick, T. Hodson, D. Kelly, M. MacIntosh, H. McGregor, T. Peacocke, I. Robson, I. Smith, K. Irwin, G. Hilton, J. Ullom, A. Walton, C. Dunare, W. Parkes, P. Ade, D. Bintley, F. Gannaway, M. Griffin, G. Pisano, R. Sudiwala, I. Walker, A. Woodcroft, M. Fich, M. Halpern, G. Mitchell, D. Naylor, and P. Bastien, “SCUBA-2: A large-format TES array for submillimetre astronomy,” Nucl. Instrum. Methods Phys. Res. A 520, 479–482 (2004). [CrossRef]
  4. J. Staguhn, C. Allen, D. Benford, E. Sharp, T. Ames, R. Arendt, D. Chuss, E. Dwek, A. Kovacs, S. Maher, C. Marx, T. Miller, S. Harvey Moseley, S. Navarro, A. Sievers, G. Voellmer, and E. Wollack, “GISMO, a 2 mm bolometer camera optimized for the study of high redshift galaxies,” J. Low Temp. Phys. 151, 709–714 (2008). [CrossRef]
  5. S. Dicker, B. Mason, P. Korngut, J. Abrahams, P. Ade, J. Aguirre, T. Ames, D. Benford, T. Chen, J. Chervenak, W. Cotton, M. Devlin, E. Figuero-Feliciano, K. Irwin, S. Maher, M. Mello, S. Moseley, J. Staguhn, R. Norrod, D. Tally, C. Tucker, B. Werner, and S. White, “MUSTANG. First light and current status,” in Infrared and Millimeter Waves, 2007, and the 2007 15th International Conference on Terahertz Electronics IRMMW-THz. Joint 32nd International Conference (IEEE, 2007), pp. 331–332.
  6. S. Withington and G. Saklatvala, “Characterizing the behavior of partially coherent detectors through spatio-temporal modes,” J. Opt. A, Pure Appl. Opt. 9, 626–633 (2007). [CrossRef]
  7. G. Saklatvala, S. Withington, and M. Hobson, “Coupled-mode theory for infrared and submillimeter wave detectors,” J. Opt. Soc. Am. A 24, 764–775 (2007). [CrossRef]
  8. S. Withington and C. Thomas, “Optical theory of partially coherent thin-film energy-absorbing structures for power detectors and imaging arrays,” J. Opt. Soc. Am. A 26, 1382–1392 (2009). [CrossRef]
  9. M. Ney, “Method of moments as applied to electromagnetic problems,” IEEE Trans. Microwave Theory Tech. 33, 972–980 (1985). [CrossRef]
  10. S. Withington, C. Tham, and G. Yassin, “Theoretical analysis of planar bolometric arrays for thz imaging systems,” Proc. SPIE 4855, 49–62 (2003). [CrossRef]
  11. D. Chuss, E. Wollack, S. Moseley, S. Withington, and G. Saklatvala, “Diffraction considerations for planar detectors in the few-mode limit,” Publ. Astron. Soc. Pac. 120, 430–438 (2008). [CrossRef]
  12. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: Spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1981). [CrossRef]
  13. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).
  14. C. Thomas and S. Withington, “Electromagnetic simulations of the partially coherent optical behaviour of resistive film TES detectors,” presented at the 21st International Symposium on Space Terahertz Technology, Oxford, UK, 23–25 March 2010.
  15. J. Krauss, Radio Astronomy, 2nd ed. (Cygnus-Quasar Books, 1986).
  16. H. Eom, Electromagnetic Wave Theory for Boundary-Value Problems: An Advanced Course on Analytical Methods (Springer Verlag, 2004). [PubMed]
  17. K. Pontoppidan, “GRASP9 technical description,” TICRA Engineering Consultants, www.ticra.com..

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited