OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 941–950

Spherical aberration and other higher-order aberrations in the human eye: from summary wave-front analysis data to optical variables relevant to visual perception

Nomdo M. Jansonius  »View Author Affiliations


JOSA A, Vol. 27, Issue 5, pp. 941-950 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000941


View Full Text Article

Enhanced HTML    Acrobat PDF (176 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wave-front analysis data from the human eye are commonly presented using the aberration coefficient c 4 0 (primary spherical aberration) together with an overall measure of all higher-order aberrations. If groups of subjects are compared, however, the relevance of an observed difference cannot easily be assessed from these summary aberration measures. A method was developed for estimating various optical variables relevant to visual perception from summary wave-front analysis data. These variables were the myopic shift (the difference in the optimal focus between high and low spatial frequencies, a threat to the simultaneous in-focus viewing of fine and coarse patterns), the depth-of-focus (at 8 cpd), and the modulation transfer at high (16 cpd; reading small print) and low (4 cpd; edge detection) spatial frequencies. The depth-of-focus was defined in two ways: using a relative measure (the full width at half-height of the through-focus curve) and an absolute measure (the range where the through-focus curve exceeds a predefined modulation transfer value). The method was shown to be accurate by using previously published contrast sensitivity data and wave-front analysis data. The applicability of the method was illustrated by applying the method to wave-front analysis measurements performed in pseudophakic patients with aspheric and spherical intraocular lenses.

© 2010 Optical Society of America

OCIS Codes
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: October 12, 2009
Revised Manuscript: January 28, 2010
Manuscript Accepted: February 11, 2010
Published: April 1, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Nomdo M. Jansonius, "Spherical aberration and other higher-order aberrations in the human eye: from summary wave-front analysis data to optical variables relevant to visual perception," J. Opt. Soc. Am. A 27, 941-950 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-5-941


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ames and C. A. Proctor, “Dioptrics of the eye,” J. Opt. Soc. Am. 5, 22-84 (1921). [CrossRef]
  2. G. von Bahr, “Investigations into the spherical and chromatic aberrations of the eye, and their influence on its refraction,” Acta Ophthalmol. 23, 1-47 (1945). [CrossRef]
  3. M. Koomen, R. Tousey, and R. Scolnik, “The spherical aberration of the eye,” J. Opt. Soc. Am. 39, 370-376 (1949). [CrossRef] [PubMed]
  4. H. Schober, H. Munker, and F. Zolleis, “Die Aberrationen des menschlichen Auges und ihre Messung,” Opt. Acta 15, 47-57 (1968). [CrossRef]
  5. Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103-112 (2002). [CrossRef] [PubMed]
  6. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  7. R. I. Calver, M. J. Cox, and D. B. Elliott, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069-2078 (1999). [CrossRef]
  8. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793-1803 (2001). [CrossRef]
  9. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  10. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137-143 (2002). [CrossRef]
  11. T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refractive Surg. 32, 2064-2074 (2006). [CrossRef]
  12. S. C. Goebels, G. U. Auffarth, and M. P. Holzer, “Lokalisation und altersabhangige Verteilung von Aberrationen des Auges,” Ophthalmologe 9, 825-831 (2008). [CrossRef]
  13. D. A. Atchison and E. L. Markwell, “Aberrations of emmetropic subjects at different ages,” Vision Res. 48, 2224-2231 (2008). [CrossRef] [PubMed]
  14. F. Zernike, “Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode,” Physica (Amsterdam) 1, 689-704 (1934). [CrossRef]
  15. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  16. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” in Trends in Optics and Photonics, V.Lakshminarayanan, ed. (Optical Society of America, 2000), pp. 232-244.
  17. N. M. Jansonius and A. C. Kooijman, “The effect of spherical and other aberrations upon the modulation transfer of the defocused human eye,” Ophthalmic Physiol. Opt. 18, 504-513 (1998). [CrossRef]
  18. P. A. Piers, S. Norrby, E. J. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration: potential improvements provided by customized correction of spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004). [CrossRef] [PubMed]
  19. P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374-384 (2007). [PubMed]
  20. H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48, 1804-1811 (2008). [CrossRef] [PubMed]
  21. K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refractive Surg. 35, 1885-1892 (2009). [CrossRef]
  22. D. G. Green and F. W. Campbell, “Effect of focus on the visual response to a sinusoidally modulated spatial stimulus,” J. Opt. Soc. Am. 55, 1154-1157 (1965). [CrossRef]
  23. A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395-412 (1974). [CrossRef]
  24. W. N. Charman and J. A. M. Jennings, “The optical quality of the monochromatic retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119-134 (1976). [PubMed]
  25. T. Olsen, “On the Stiles-Crawford effect and ocular imagery,” Acta Ophthalmol. 71, 85-88 (1993). [CrossRef]
  26. N. M. Jansonius and A. C. Kooijman, “The effect of defocus on edge contrast sensitivity,” Ophthalmic Physiol. Opt. 17, 128-132 (1997). [CrossRef] [PubMed]
  27. P. E. King-Smith and J. J. Kulikowski, “Line, edge and grating detectors in human vision,” J. Physiol. (London) 230, 23P-25P (1972).
  28. H. H. Emsley, Visual Optics (Butterworth, 1952).
  29. B. H. Crawford, “The Stiles-Crawford effects and their significance in vision,” in Handbook of Sensory Physiology VII-4, D.Jameson and L.M.Hurvich, eds. (Springer, 1972), pp. 470-483.
  30. Y. L. Grand, “Spectral luminosity,” in Handbook of Sensory Physiology VII-4, D.Jameson and L.M.Hurvich, eds. (Springer, 1972), pp. 413-433.
  31. G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321-336 (1947). [CrossRef] [PubMed]
  32. G. van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233-244 (1962). [CrossRef]
  33. G. E. Legge, K. T. Mullen, G. C. Woo, and F. W. Campbell, “Tolerance to visual defocus,” J. Opt. Soc. Am. A 4, 851-863 (1987). [CrossRef] [PubMed]
  34. A. J. Thomasian, The Structure of Probability Theory with Applications (McGraw-Hill, 1969).
  35. Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Age-related changes of defocus-specific contrast sensitivity in healthy subjects,” Ophthalmic Physiol. Opt. 20, 323-334 (2000). [CrossRef] [PubMed]
  36. Y. K. Nio, N. M. Jansonius, E. Geraghty, S. Norrby, and A. C. Kooijman, “Effect of intraocular lens implantation on visual acuity, contrast sensitivity, and depth of focus,” J. Cataract Refractive Surg. 29, 2073-2081 (2003). [CrossRef]
  37. M. Francon, “Aberration spherique chromatisme et pouvoir separateur de l'oeil,” Revue d'Optique 30, 71-80 (1951).
  38. A. Ivanoff, “About the spherical aberration of the eye,” J. Opt. Soc. Am. 46, 901-903 (1956). [CrossRef] [PubMed]
  39. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272-280 (2004). [CrossRef]
  40. L. Lundstrom, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192-2198 (2009). [CrossRef]
  41. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143-1151 (2002).
  42. J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002). [PubMed]
  43. P. Artal, “History of IOLs that correct spherical aberration,” J. Cataract Refractive Surg. 35, 962-963 (2009). [CrossRef]
  44. K. W. van Gaalen, S. A. Koopmans, N. M. Jansonius, and A. C. Kooijman, “The optical performance of aspheric and spherical intraocular lenses,” J. Cataract Refractive Surgery 36, 34-43 (2010). [CrossRef]
  45. P. Padmanabhan, S. K. Rao, R. Jayasree, M. Chowdhry, and J. Roy, “Monochromatic aberrations in eyes with different intraocular lens optic designs,” J. Refract. Surg. 22, 172-177 (2006). [PubMed]
  46. U. Mester and H. Kaymak, “Comparison of the AcrySof IQ aspheric blue light filter and the AcrySof SA60AT intraocular lenses,” J. Refract. Surg. 24, 817-825 (2008). [PubMed]
  47. K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142, 750-756.e3 (2006). [CrossRef] [PubMed]
  48. M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refractive Surg. 35, 663-671 (2009). [CrossRef]
  49. T. Kohnen, O. K. Klaproth, and J. Buehren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116, 1697-1706 (2009). [CrossRef] [PubMed]
  50. G. Munoz, C. Albarran-Diego, R. Montes-Mico, A. Rodriguez-Galietero, and J. L. Alio, “Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens,” J. Cataract Refractive Surg. 32, 1320-1327 (2006). [CrossRef]
  51. H. P. Sandoval, L. E. Fernandez de Castro, D. T. Vroman, and K. D. Solomon, “Comparison of visual outcomes, photopic contrast sensitivity, wavefront analysis, and patient satisfaction following cataract extraction and IOL implantation: aspheric vs spherical acrylic lenses,” Eye 22, 1469-1475 (2008). [CrossRef]
  52. P. F. Tzelikis, L. Akaishi, F. C. Trindade, and J. E. Boteon, “Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: a comparative study,” Am. J. Ophthalmol. 145, 827-833.e1 (2008). [CrossRef] [PubMed]
  53. R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with an aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33, 203-209 (2007). [CrossRef]
  54. B. Johansson, S. Sundelin, A. Wikberg-Matsson, P. Unsbo, and A. Behndig, “Visual and optical performance of the Akreos Adapt Advanced Optics and Tecnis Z9000 intraocular lenses: Swedish multicenter study,” J. Cataract Refractive Surg. 33, 1565-1572 (2007). [CrossRef]
  55. S. W. Kim, H. Ahn, E. K. Kim, and T. I. Kim, “Comparison of higher order aberrations in eyes with aspherical or spherical intraocular lenses,” Eye 22, 1493-1498 (2008). [CrossRef] [PubMed]
  56. D. B. Elliot, M. A. Bullimore, and I. L. Bailey, “Improving the reliability of the Pelli-Robson contrast sensitivity test,” Clin. Vision Sci. 6, 471-475 (1991).
  57. Y. K. Nio, N. M. Jansonius, P. Lamers, A. Mager, J. Zeinstra, and A. C. Kooijman, “Influence of the rate of contrast change on the quality of contrast sensitivity assessment: a comparison of three psychophysical methods,” Ophthalmic Physiol. Opt. 25, 18-26 (2005). [CrossRef] [PubMed]
  58. J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002). [CrossRef] [PubMed]
  59. M. T. Sheehan, A. V. Goncharov, V. M. O'Dwyer, V. Toal, and C. Dainty, “Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field,” Opt. Express 15, 7367-7380 (2007). [CrossRef] [PubMed]
  60. L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427-433 (2002). [CrossRef] [PubMed]
  61. M. P. Cagigal, V. F. Canales, J. F. Castejon-Mochon, P. M. Prieto, N. Lopez-Gil, and P. Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37-39 (2002). [CrossRef]
  62. L. N. Thibos, “Retinal image quality for virtual eyes generated by a statistical model of ocular wavefront aberrations,” Ophthalmic Physiol. Opt. 29, 288-291 (2009). [CrossRef] [PubMed]
  63. F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558-578 (1966).
  64. J. A. Solomon and D. G. Pelli, “The visual channel mediating letter identification,” Nature 369, 395-397 (1994). [CrossRef] [PubMed]
  65. S. G. Whittaker and J. Lovie-Kitchin, “Visual requirements for reading,” Optom. Vision Sci. 70, 54-65 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited