OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 968–972

Application of inverse, strict conformal transformation to design waveguide devices

Y. G. Ma, N. Wang, and C. K. Ong  »View Author Affiliations

JOSA A, Vol. 27, Issue 5, pp. 968-972 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Integration of transformation optics with development of metamaterials offers great opportunities to create exotic material with electromagnetic functionality absent from nature. It has already led to several significant advancements in physical conceptions and technological applications such as invisible cloaking. Unfortunately practical application is often restricted by the complex requirements on material properties imposed by the general optical transformation theory. It is therefore necessary to relax the stringent requirements of materials properties in order to practicably use the power of transformation optics to design exotic optical devices. Development of new coordinate transformation mathematics to compromise between the stringent materials properties and the ultimate performance required by a useful novel device is required. In this work the authors employed strict conformal transformation to design physical materials that could guide light in a predetermined way. A simple and efficient numerical approach based on unusual inverse transformation is proposed here to quickly solve partial differential equations and construct the mapping relationship. The results showed that a transformed optical device could be made by purely using isotropic dielectric materials. Two application examples were numerically proposed to verify the versatility of conformal transformation and the robustness of the inverse approach. One was a 90° waveguide beam bend, and the other was a waveguide-type beam splitter or coupler.

© 2010 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: January 4, 2010
Revised Manuscript: March 7, 2010
Manuscript Accepted: March 8, 2010
Published: April 5, 2010

Y. G. Ma, N. Wang, and C. K. Ong, "Application of inverse, strict conformal transformation to design waveguide devices," J. Opt. Soc. Am. A 27, 968-972 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  3. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006). [CrossRef]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006). [CrossRef] [PubMed]
  5. D. Schurig, J. B. Pendry, and D. R. Smith, “Transformation-designed optical elements,” Opt. Express 15, 14772 (2007). [CrossRef] [PubMed]
  6. O. Ozgun and M. Kuzuoglu, “Utilization of anisotropic metamaterial layers in waveguide miniaturization and transitions,” IEEE Microw. Wirel. Compon. Lett. 17, 754-756 (2007). [CrossRef]
  7. D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett. 93, 251111 (2008). [CrossRef]
  8. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008). [CrossRef] [PubMed]
  9. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nature Mater. 8, 642-645 (2009). [CrossRef]
  10. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  11. R. W. Ziolkowski, and A. D. Kipple, “Causality and double-negative metamaterial,” Phys. Rev. E 68, 026615 (2003). [CrossRef]
  12. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224-227 (2007). [CrossRef]
  13. Y. G. Ma, X. C. Wang, and C. K. Ong, “Negative refractive index of metallic cross-I-shaped pairs: Origin and evolution with pair gap width,” Phys. Rev. E 78, 016605 (2008). [CrossRef]
  14. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110 (2009). [CrossRef]
  15. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef] [PubMed]
  16. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369 (2009). [CrossRef] [PubMed]
  17. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Nanostructure cloaking at optical frequencies,” Nat. Photonics 3, 461-463 (2009). [CrossRef]
  18. U. Leonhardt, “Towards invisibility in the visible,” Nature Mater. 8, 537-538 (2009). [CrossRef]
  19. N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17, 14872-14879 (2009). [CrossRef] [PubMed]
  20. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69-152 (2009). [CrossRef]
  21. J. F. Thompson, B. K. Soni, and N. P. Weatherill, Handbook of Grid Generation (CRC Press, 1994).
  22. P. Henrici, Applied and Computational Complex Analysis, Vol. 3 (Wiley, 1986).
  23. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006). [CrossRef]
  24. L. H. Shi, L. Gao, S. L. He, and B. W. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76, 045116 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited