OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 973–976

Nanolithography in the quasi-far field based on the destructive interference effect of surface plasmon polaritons

Xia Wan, Qingkang Wang, and Haihua Tao  »View Author Affiliations


JOSA A, Vol. 27, Issue 5, pp. 973-976 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000973


View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

On the principle of phase-shift mask, the metal segment of a sub-wavelength Ag grating on a quartz substrate is used as a phase-shifting layer in this photolithography method. When the radiation modes of the surface plasmon polaritons (SPPs) excited on the Ag surface have optical phase opposite to that of the waves emitting from the slits, destructive interference occurs and the diffraction limit can be broken through. The SPPs excited on the surface between Ag and water can be transformed into propagation modes in the photoresist. Therefore, nanolithography can be achieved in the quasi-far field with this method.

© 2010 Optical Society of America

OCIS Codes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(220.3740) Optical design and fabrication : Lithography
(240.6680) Optics at surfaces : Surface plasmons
(350.3950) Other areas of optics : Micro-optics
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: December 9, 2009
Revised Manuscript: March 2, 2010
Manuscript Accepted: March 2, 2010
Published: April 5, 2010

Citation
Xia Wan, Qingkang Wang, and Haihua Tao, "Nanolithography in the quasi-far field based on the destructive interference effect of surface plasmon polaritons," J. Opt. Soc. Am. A 27, 973-976 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-5-973


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. V. Klein, Optics (Wiley, New York, 1970).
  2. J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16, 3137-3141 (1998). [CrossRef]
  3. R. H. Long, J. J. Chen, J. H. Lim, J. B. Wiley, and W. L. Zhou, “Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures,” Nanotechnology 20, 285306 (2009). [CrossRef] [PubMed]
  4. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560-3562 (1999). [CrossRef]
  5. O. J. Martin, N. B. Piller, H. Schmid, H. Biebuyck, and B. Michel, “Energy flow in light-coupling masks for lensless optical lithography,” Opt. Express 3, 280-285 (1998). [CrossRef] [PubMed]
  6. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055-3065 (2004). [CrossRef] [PubMed]
  7. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780-4782 (2004). [CrossRef]
  8. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957-961 (2005). [CrossRef] [PubMed]
  9. X. Guo, J. Du, and Y. Guo, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31, 2613-2615 (2006). [CrossRef] [PubMed]
  10. K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008). [CrossRef]
  11. J. Q. Wang, H. M. Liang, S. Shi, and J. L. Du, “Theoretical analysis of interference nanolithography of surface plasmon polaritons without a match layer,” Chin. Phys. Lett. 26, 084208 (2009). [CrossRef]
  12. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828-1836 (1982). [CrossRef]
  13. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2, pp. 4-39.
  14. Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 023104 (2008). [CrossRef]
  15. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608-1615 (2006). [CrossRef]
  16. Stéphane Durant, Z. W. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 24, 2383-2392 (2006). [CrossRef]
  17. H. F. Talbot, “Facts relating to optical science. No. IV,” Philos. Mag. 9, 401 (1836).
  18. Y. Q. Lu, C. H. Zhou, S. Q. Wang, and B. Wang, “Polarization-dependent Talbot effect,” J. Opt. Soc. Am. A 23, 2154-2160 (2006). [CrossRef]
  19. M. R. Dennis, N. I. Zheludev, F. Javier, and Garcia de Abajo, “The plasmon Talbot effect,” Opt. Express 15, 9692-9700 (2007). [CrossRef] [PubMed]
  20. S. Y. Teng, Y. G. Tan, and C. F. Cheng, “Quasi-Talbot effect of the high-density grating in near field,” J. Opt. Soc. Am. A 25, 2945-2951 (2008). [CrossRef]
  21. P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffré, G. Coppola, and M. Iodice, “Mid-infrared tunable two-dimensional Talbot array illuminator,” Appl. Phys. Lett. 94, 121105 (2009). [CrossRef]
  22. B. J. McMorran and A. D. Cronin, “An electron Talbot interferometer,” New J. Phys. 11, 033021 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited