OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 977–984

High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering

Xuan Yang, Chao Shi, Damon Wheeler, Rebecca Newhouse, Bin Chen, Jin Z. Zhang, and Claire Gu  »View Author Affiliations


JOSA A, Vol. 27, Issue 5, pp. 977-984 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000977


View Full Text Article

Enhanced HTML    Acrobat PDF (696 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high-sensitivity molecular sensor using a hollow-core photonic crystal fiber (HCPCF) based on surface-enhanced Raman scattering (SERS) has been experimentally demonstrated and theoretically analyzed. A factor of 100 in sensitivity enhancement is shown in comparison to direct sampling under the same conditions. With a silver nanoparticle colloid as the SERS substrate and Rhodamine 6G as a test molecule, the lowest detectable concentration is 10 10 M with a liquid-core photonic crystal fiber (LCPCF) probe, and 10 8 M for direct sampling. The high sensitivity provided by the LCPCF SERS probe is promising for molecular detection in various sensing applications.

© 2010 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(300.6450) Spectroscopy : Spectroscopy, Raman
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 4, 2010
Revised Manuscript: February 21, 2010
Manuscript Accepted: March 5, 2010
Published: April 5, 2010

Citation
Xuan Yang, Chao Shi, Damon Wheeler, Rebecca Newhouse, Bin Chen, Jin Z. Zhang, and Claire Gu, "High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering," J. Opt. Soc. Am. A 27, 977-984 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-5-977


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241-250 (1998). [CrossRef]
  2. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and Mi. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597-R624 (2002). [CrossRef]
  3. A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Matter 4, 1143-1212 (1992). [CrossRef]
  4. B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110, 15666-15675 (2006). [CrossRef] [PubMed]
  5. B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107, 3372-3378 (2003). [CrossRef]
  6. H. Chu, Y. Liu, Y. Huang, and Y. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15, 12230-12239 (2007). [CrossRef] [PubMed]
  7. S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630-2636 (2006). [CrossRef] [PubMed]
  8. Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005). [CrossRef]
  9. C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108 (2005). [CrossRef]
  10. M. Volkan, D. L. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman of dopamine and neurotransmitters using sol-gel substrates and polymer-coated fiber-optic probes,” Appl. Spectrosc. 54, 1842-1848 (2000). [CrossRef]
  11. D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B 69, 28-36 (2000). [CrossRef]
  12. D. L. Stokes, Z. H. Chi, and T. Vo-Dinh, “Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis,” Appl. Spectrosc. 58, 292-298 (2004). [CrossRef] [PubMed]
  13. R. Gessner, P. Rosch, R. Petry, M. Schmitt, M. A. Strehle, W. Kiefer, and J. Popp, “The application of a SERS fiber probe for the investigation of sensitive biological samples,” Analyst (Cambridge, U.K.) 129, 1193-1199 (2004). [CrossRef]
  14. E. Polwart, R. L. Keir, C. M. Davidson, W. E. Smith, and D. A. Sadler, “Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles,” Appl. Spectrosc. 54, 522-527 (2000). [CrossRef]
  15. Y. Komachi and H. Sato, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942-2944 (2005). [CrossRef] [PubMed]
  16. J. Ma and Y. Li, “Fiber Raman background study and its application in setting up optical fiber Raman probes,” Appl. Opt. 35, 2527-2533 (1996). [CrossRef] [PubMed]
  17. A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024-2030 (2007). [CrossRef]
  18. H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300-8305 (2008). [CrossRef] [PubMed]
  19. M. K. K. Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles,” Opt. Lett. 34, 968-970 (2009). [CrossRef] [PubMed]
  20. M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466-468 (2010). [CrossRef]
  21. H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006). [CrossRef]
  22. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007). [CrossRef]
  23. C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008). [CrossRef]
  24. F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Opt. Express 15, 13675-13681 (2007). [CrossRef] [PubMed]
  25. Y. Han, M. K. Oo, Y. Zhu, S. Sukhishvili, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Liquid-core photonic crystal fiber platform for Raman scattering measurements of microliter analyte solutions,” Proc. SPIE 6767, 67670G (2007). [CrossRef]
  26. Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008). [CrossRef]
  27. G. E. Walrafen and J. Stone, “Intensification of spontaneous Raman spectra by use of liquid core optical fibers,” Appl. Spectrosc. 26, 585-589 (1972). [CrossRef]
  28. M. J. Pelletier and R. Altkorn, “Efficient elimination of fluorescence background from Raman spectra collected in a liquid core optical fiber,” Appl. Spectrosc. 54, 1837-1841 (2000). [CrossRef]
  29. M. J. Pelletier and R. Altkorn, “Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell,” Anal. Chem. 73, 1393-1397 (2001). [CrossRef] [PubMed]
  30. R. Altkorn, M. D. Malinsky, R. P. V. Duyne, and I. Koev, “Intensity considerations in liquid core optical fiber Raman spectroscopy,” Appl. Spectrosc. 55, 373-381 (2001). [CrossRef]
  31. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  32. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391-3395 (1982). [CrossRef]
  33. C. Shi, H. Yan, C. Gu, D. Ghosh, L. Seballos, S. Chen, and J. Z. Zhang, “A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection,” Appl. Phys. Lett. 92, 103107 (2008). [CrossRef]
  34. M. Kerker, O. Siiman, L. A. Bumm, and D. S. Wang, “Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver,” Appl. Opt. 19, 3253-3255 (1980). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited