OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: 1450–1456

Partially correlated thin annular sources: the vectorial case

M. Santarsiero, V. Ramírez-Sánchez, and R. Borghi  »View Author Affiliations

JOSA A, Vol. 27, Issue 6, pp. 1450-1456 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (195 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop an electromagnetic analysis for partially correlated thin annular sources. The elements of the correlation matrix are assumed to depend only on the angular distance between two typical points. For any such source, we show how the modal expansion can be found. Correlation changes upon free propagation are discussed. Further, examples and possible synthesis schemes are presented.

© 2010 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.4070) Coherence and statistical optics : Modes
(260.5430) Physical optics : Polarization

ToC Category:
Coherence and Statistical Optics

Original Manuscript: January 26, 2010
Manuscript Accepted: March 12, 2010
Published: May 21, 2010

M. Santarsiero, V. Ramírez-Sánchez, and R. Borghi, "Partially correlated thin annular sources: the vectorial case," J. Opt. Soc. Am. A 27, 1450-1456 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Gori, M. Santarsiero, R. Borghi, and C. Li, “Partially correlated thin annular sources: the scalar case,” J. Opt. Soc. Am. A 25, 2826–2832 (2008). [CrossRef]
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  3. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  4. F. Gori, G. Guattari, and C. Padovani, “Modal expansion of J0-correlated Schell-model sources,” Opt. Commun. 64, 311–316 (1987). [CrossRef]
  5. D. F. V. James, “Change of polarization of light beam on propagation in free-space,” J. Opt. Soc. Am. A 11, 1641–1643 (1994). [CrossRef]
  6. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23, 241–243 (1998). [CrossRef]
  7. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarisation matrix,” Pure Appl. Opt. 7, 941–951 (1998). [CrossRef]
  8. F. Gori, M. Santarsiero, R. Borghi, and G. Guattari, “The irradiance of partially polarized beams in a scalar treatment,” Opt. Commun. 163, 159–163 (1999). [CrossRef]
  9. S. R. Seshadri, “Partially coherent Gaussian Schell-model electromagnetic beam,” J. Opt. Soc. Am. A 16, 1373–1380 (1999). [CrossRef]
  10. F. Gori, M. Santarsiero, R. Borghi, and G. Piquero, “Use of the van Cittert–Zernike theorem for partially polarized sources,” Opt. Lett. 25, 1291–1293 (2000). [CrossRef]
  11. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt. 3, 1–9 (2001). [CrossRef]
  12. G. Piquero, R. Borghi, A. Mondello, and M. Santarsiero, “Far field of beams generated by quasi-homogeneous sources passing through polarization gratings,” Opt. Commun. 195, 339–350 (2001). [CrossRef]
  13. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003). [CrossRef] [PubMed]
  14. E. Wolf, “Unified theory of coherence and polarization of statistical electromagnetic beams,” Phys. Lett. A 312, 263–267 (2003). [CrossRef]
  15. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, “Coherent-mode decomposition of partially polarized, partially coherent sources,” J. Opt. Soc. Am. A 20, 78–84 (2003). [CrossRef]
  16. J. Tervo, T. Setälä, and A. T. Friberg, “Theory of partially coherent electromagnetic fields in the space-frequency domain,” J. Opt. Soc. Am. A 21, 2205–2215 (2004). [CrossRef]
  17. R. Martínez-Herrero, G. Piquero, and P. Mejías, “Parametric characterization of the spatial structure of partially coherent and partially polarized beams,” J. Opt. A, Pure Appl. Opt. 6, S67–S71 (2004). [CrossRef]
  18. O. Korotkova, M. Salem, and E. Wolf, “Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source,” Opt. Lett. 29, 1173–1175 (2004). [CrossRef] [PubMed]
  19. P. Réfrégier and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express 13, 6051–6060 (2005). [CrossRef] [PubMed]
  20. H. Roychowdhury and O. Korotkova, “Realizability conditions for electromagnetic Gaussian Schell-model sources,” Opt. Commun. 249, 379–385 (2005). [CrossRef]
  21. T. Shirai, “Polarization properties of a class of electromagnetic Gaussian Schell-model beams which have the same far-zone intensity distribution as a fully coherent laser beam,” Opt. Commun. 256, 197–209 (2005). [CrossRef]
  22. F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, “Effects of coherence on the degree of polarization in Young interference pattern,” Opt. Lett. 31, 688–690 (2006). [CrossRef] [PubMed]
  23. A. Luis, “Ray picture of polarization and coherence in a Young interferometer,” J. Opt. Soc. Am. A 23, 2855–2860 (2006). [CrossRef]
  24. M. Santarsiero, F. Gori, R. Borghi, and G. Guattari, “Vector-mode analysis of symmetric two-point sources,” J. Opt. A, Pure Appl. Opt. 9, 593–602 (2007). [CrossRef]
  25. F. Gori, M. Santarsiero, and R. Borghi, “Modal expansion for J0-correlated electromagnetic sources,” Opt. Lett. 33, 1857–1859 (2008). [CrossRef] [PubMed]
  26. S. N. Volkov, D. F. V. James, T. Shirai, and E. Wolf, “Intensity fluctuations and the degree of cross-polarization in stochastic electromagnetic beams,” J. Opt. A, Pure Appl. Opt. 10, 055001 (2008). [CrossRef]
  27. J. Tervo, T. Setl, A. Roueff, P. Rfrgier, and A. T. Friberg, “Two-point Stokes parameters: interpretation and properties,” Opt. Lett. 34, 3074–3076 (2009). [CrossRef] [PubMed]
  28. R. Borghi, F. Gori, and S. A. Ponomarenko, “On a class of electromagnetic diffraction-free beams,” J. Opt. Soc. Am. A 26, 2275–2281 (2009). [CrossRef]
  29. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge Univ. Press, 2007).
  30. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge Univ. Press, 1985).
  31. S. K. Berberian, Introduction to Hilbert Space (Oxford Univ. Press, 1961).
  32. G. S. Agarwal, G. Gbur, and E. Wolf, “Coherence properties of sunlight,” Opt. Lett. 29, 459–461 (2004). [CrossRef] [PubMed]
  33. F. Gori, “Far-zone approximation for partially coherent sources,” Opt. Lett. 30, 2840–2842 (2005). [CrossRef] [PubMed]
  34. I. S. Gradshteyn and I. M. Ryzhik, in Table of Integrals, Series, and Products, 6th ed., A.Jeffrey and D.Zwillinger, eds. (Academic, 2000).
  35. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  36. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005). [CrossRef]
  37. Q. W. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324–331 (2002). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited