OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 7 — Jul. 1, 2010
  • pp: 1535–1540

Measurement and modeling of 2D hexagonal resonant-grating filter performance

A.-L. Fehrembach, O. Gauthier-Lafaye, K. ChanShin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac  »View Author Affiliations

JOSA A, Vol. 27, Issue 7, pp. 1535-1540 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (357 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the measurement of a polarization-independent guided-mode resonant filter with a Q factor of 2200 functioning near normal incidence in the near infrared ( 850 nm ) . Besides this remarkable performance, we provide a detailed optical and structural characterization of the component, which points out the origins of the limitation of the experimental performance. We conclude that the defaults in question can be corrected by improving the lithography process, and we are confident that even greater performance will be obtained in future realizations.

© 2010 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.1950) Optical devices : Diffraction gratings
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6628) Thin films : Subwavelength structures, nanostructures
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Diffraction and Gratings

Original Manuscript: February 17, 2010
Revised Manuscript: April 27, 2010
Manuscript Accepted: May 11, 2010
Published: June 2, 2010

A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, "Measurement and modeling of 2D hexagonal resonant-grating filter performance," J. Opt. Soc. Am. A 27, 1535-1540 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996). [CrossRef]
  2. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997). [CrossRef]
  3. A. L. Fehrembach and A. Sentenac, “Study of waveguide gratings eigenmodes for unpolarized filtering applications,” J. Opt. Soc. Am. A 20, 481–488 (2003). [CrossRef]
  4. D. Lacour, G. Granet, J. P. Plumey, and A. Mure Ravaud, “Polarization independence of a one-dimensional grating in conical mounting,” J. Opt. Soc. Am. A 20, 1546–1552 (2003). [CrossRef]
  5. A. L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005). [CrossRef]
  6. A. B. Greenwell, S. Boonruang, and M. G. Moharam, “Multiple wavelength resonant grating filters at oblique incidence with broad angular acceptance,” Opt. Express 15, 8626–8638 (2007). [CrossRef] [PubMed]
  7. G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, “Tunable, oblique incidence resonant grating filter for telecommunications,” Appl. Opt. 43, 1683–1694 (2004). [CrossRef] [PubMed]
  8. E. Popov and B. Bozhkov, “Corrugated waveguides as resonance optical filters-advantages and limitations,” J. Opt. Soc. Am. A 18, 1758–1764 (2001). [CrossRef]
  9. P. Song and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21, 549–551 (1996) [CrossRef]
  10. A. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a narrowband, angular tolerant, polarization-independent, doubly periodic resonant grating filter,” Opt. Lett. 32, 2269–2271 (2007). [CrossRef] [PubMed]
  11. S. Hernandez, O. Gauthier-Lafaye, A.-L. Fehrembach, S. Bonnefont, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “High performance 2D resonant grating filter at 850 nm under high oblique incidence of ∼60°,” Appl. Phys. Lett. 92, 131112 (2008). [CrossRef]
  12. E. Grinvald, T. Katchalski, S. Soria, S. Levit, and A. A. Friesem, “Role of photonic bandgaps in polarization-independent grating waveguide structures,” J. Opt. Soc. Am. A 25, 1435–1443 (2008). [CrossRef]
  13. N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14, 12613–12622 (2006). [CrossRef] [PubMed]
  14. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556–1558 (1998). [CrossRef]
  15. P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003). [CrossRef]
  16. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997). [CrossRef]
  17. S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007). [CrossRef]
  18. A. L. Fehrembach, D. Maystre, and A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A 19, 1136–1144 (2002). [CrossRef]
  19. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  20. A. Talneau, F. Lemarchand, A.-L. Fehrembach, and A. Sentenac, “Impact of electron-beam lithography irregularities across millimeter-scale resonant grating filter performances,” Appl. Opt. 49, 658–662 (2010). [CrossRef] [PubMed]
  21. V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited