OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 7 — Jul. 1, 2010
  • pp: 1549–1554

Characterizing corneal shape after LASIK using a reference system intrinsic to the cornea

Rosario G. Anera, Aixa Alarcón, José R. Jiménez, and Luis Jiménez del Barco  »View Author Affiliations


JOSA A, Vol. 27, Issue 7, pp. 1549-1554 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001549


View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The reliability of using a reference system intrinsic to the cornea has been evaluated in order to characterize corneas of subjects after refractive surgery. Data on 90 eyes operated on by LASIK to correct myopia and astigmatism were considered. The corneal parameters (curvature radii and corneal asphericity) found with respect to this reference system are compared with the parameters provided directly by the corneal topographer. The corneal parameters referenced to the intrinsic main axes of the cornea allow a better characterization of the corneal geometry, showing lower variability and diminishing the dissimilarities between the different eyes. The use of these parameters reduces the discrepancies between the real experimental and the theoretically predicted values (21% mean relative error using intrinsic data versus 81% using the topographer data). To understand and reduce these differences is essential in refractive surgery.

© 2010 Optical Society of America

OCIS Codes
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation
(330.7335) Vision, color, and visual optics : Visual optics, refractive surgery

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: February 2, 2010
Revised Manuscript: April 21, 2010
Manuscript Accepted: May 3, 2010
Published: June 2, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Rosario G. Anera, Aixa Alarcón, José R. Jiménez, and Luis Jiménez del Barco, "Characterizing corneal shape after LASIK using a reference system intrinsic to the cornea," J. Opt. Soc. Am. A 27, 1549-1554 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-7-1549


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. D. Klyce, “Information fidelity in corneal topography,” Br. J. Ophthamol. 79, 791–792 (1995). [CrossRef]
  2. C. E. Campbell, in Wavefront Customized Visual Correction: The Quest for Super Vision II, R.R.Krueger, R.A.Applegate, and S.M.MacRae, eds. (SLACK Incorporated, 2004), p. 301.
  3. J. Wang, D. A. Rice, and S. D. Klyce, “Analysis of the effects of astigmatism and misalignment on corneal surface reconstruction from photokeratoscopic data,” Refract. Corneal Surg. 7, 129–140 (1991). [PubMed]
  4. S. Hick, J. F. Laliberté, J. Meunier, M. Chagnon, and I. Brunette, “Effects of misalignment during corneal topography,” J. Cataract Refractive Surg. 33, 1522–1529 (2007). [CrossRef]
  5. P. R. Preussner, J. Wahl, and C. Kramann, “Corneal model,” J. Cataract Refractive Surg. 29, 471–477 (2003). [CrossRef]
  6. R. Navarro, L. Gonzalez, and J. L. Hernandez, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A 23, 219–232 (2006). [CrossRef]
  7. T. Y. Baker, “Ray tracing through non-spherical surfaces,” Proc. Phys. Soc. London 55, 361–364 (1943). [CrossRef]
  8. H. Burek and W. A. Douthwaite, “Mathematical-models of the general corneal surface,” Ophthalmic Physiol. Opt. 13, 68–72 (1993). [CrossRef] [PubMed]
  9. C. R. Munnerlyn, S. J. Koons, and J. Marshall, “Photorefractive keratectomy—a technique for laser refractive surgery,” J. Cataract Refractive Surg. 14, 46–52 (1988).
  10. R. G. Anera, J. R. Jimenez, L. J. del Barco, J. Bermudez, and E. Hita, “Changes in corneal asphericity after laser in situ keratomileusis,” J. Cataract Refractive Surg. 29, 762–768 (2003). [CrossRef]
  11. ANSI Z80.23-2008 Corneal Topography Systems—Standard Terminology, Requirements.
  12. A. Pérez-Escudero, C. Dorronsoro, and S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J. Opt. Soc. Am. A 27, 1541–1548 (2010). [CrossRef]
  13. C. E. Martinez, R. A. Applegate, H. C. Howland, S. D. Klyce, M. B. McDonald, and J. P. Medina, “Changes in corneal aberration structure after photorefractive keratectomy,” Invest. Ophthalmol. Visual Sci. 37, 4277 (1996) [ARVO abstract].
  14. K. M. Oliver, R. P. Hemenger, M. C. Corbett, D. P. S. OBrart, S. Verma, J. Marshall, and A. Tomlinson, “Corneal optical aberrations induced by photorefractive keratectomy,” J. Refract. Surg. 13, 246–254 (1997). [PubMed]
  15. S. Marcos, “Aberrations and visual performance following standard laser vision correction,” J. Refract. Surg. 17, S596–S601 (2001). [PubMed]
  16. J. R. Jimenez, R. G. Anera, and L. J. del Barco, “Equation for corneal asphericity after corneal refractive surgery,” J. Refract. Surg. 19, 65–69 (2003). [PubMed]
  17. J. R. Jimenez, R. G. Anera, L. J. del Barco, and E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett. 81, 1521–1523 (2002). [CrossRef]
  18. R. G. Anera, J. R. Jimenez, L. J. del Barco, and E. Hita, “Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea,” Opt. Lett. 28, 417–419 (2003). [CrossRef] [PubMed]
  19. M. Mrochen and T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg. 17, S584–S587 (2001). [PubMed]
  20. E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).
  21. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).
  22. A. Calossi, The Optical Quality of the Cornea (Fabiano Editore, 2002).
  23. P. M. Kiely, G. Smith, and L. G. Carney, “The shape of the human cornea,” Opt. Acta 29, 1027–1040 (1982). [CrossRef]
  24. L. G. Carney, J. C. Mainstone, and B. A. Henderson, “Corneal topography and myopia—A cross-sectional study,” Invest. Ophthalmol. Visual Sci. 38, 311–320 (1997).
  25. J. M. Gonzalez-Meijome, J. Jorge, A. Queiros, J. B. Almeida, and M. A. Parafita, “A comparison of the ARK-700A autokeratometer and Medmont E300 corneal topographer when measuring peripheral corneal curvature,” Ophthalmic Physiol. Opt. 24, 391–398 (2004). [CrossRef] [PubMed]
  26. R. G. Anera, C. Villa, J. R. Jimenez, R. Gutierrez, and L. J. del Barco, “Differences between real and predicted corneal shapes after aspherical corneal ablation,” Appl. Opt. 44, 4528–4532 (2005). [CrossRef] [PubMed]
  27. J. R. Jimenez, R. G. Anera, L. J. Del Barco, and E. Hita, “Predicting changes in corneal asphericity after hyperopic LASIK,” J. Cataract Refractive Surg. 29, 1468–1468 (2003). [CrossRef]
  28. J. A. Diaz, R. G. Anera, J. R. Jimenez, and L. J. del Barco, “Optimum corneal asphericity of myopic eyes for refractive surgery,” J. Mod. Opt. 50, 1903–1915 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited