OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 7 — Jul. 1, 2010
  • pp: 1555–1560

Electromagnetic enhancement by a single nano-groove in metallic substrate

Siwen Zhang, Haitao Liu, and Guoguang Mu  »View Author Affiliations

JOSA A, Vol. 27, Issue 7, pp. 1555-1560 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose systematic investigations of the electromagnetic enhancement by a single nano-groove in gold substrate. The impacts of the groove parameters and of the illumination conditions on the enhanced intensity are explored using a fully vectorial numerical method. The obtained data can be well predicted and explained by a simple Fabry–Perot model. By virtue of the semi-analytical model, we identify two main factors that enable giant electric-field enhancement in very narrow grooves: the Fabry–Perot resonance and the large wave impedance of the fundamental mode in the groove.

© 2010 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics
(050.6624) Diffraction and gratings : Subwavelength structures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Diffraction and Gratings

Original Manuscript: January 29, 2010
Revised Manuscript: May 12, 2010
Manuscript Accepted: May 12, 2010
Published: June 3, 2010

Siwen Zhang, Haitao Liu, and Guoguang Mu, "Electromagnetic enhancement by a single nano-groove in metallic substrate," J. Opt. Soc. Am. A 27, 1555-1560 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef] [PubMed]
  2. M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003). [CrossRef] [PubMed]
  3. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004). [CrossRef]
  4. W. Yuan, H. P. Ho, R. K. Y. Lee, and S. Kong, “Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates,” Appl. Opt. 48, 4329–4337 (2009). [CrossRef] [PubMed]
  5. F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996). [CrossRef] [PubMed]
  6. H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000). [CrossRef]
  7. P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000). [CrossRef]
  8. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006). [CrossRef] [PubMed]
  9. P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004). [CrossRef]
  10. H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002). [CrossRef]
  11. E. Popov, M. Nevière, J. Wenger, P. F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A 23, 2342–2348 (2006). [CrossRef]
  12. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008). [CrossRef] [PubMed]
  13. H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008). [CrossRef]
  14. H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006). [CrossRef]
  15. W. Wirgin, “Resonance scattering of electromagnetic waves from a rectangular groove on a metallic mirror,” Opt. Commun. 7, 70–75 (1973). [CrossRef]
  16. A. A. Maradudin, A. V. Schegrov, and T. A. Leskova, “Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface,” Opt. Commun. 135, 352–360 (1997). [CrossRef]
  17. J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009). [CrossRef]
  18. M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61, 14078–14088 (2000). [CrossRef]
  19. T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: a three-dimensional numerical study,” Phys. Rev. B 79, 245409 (2009). [CrossRef]
  20. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001). [CrossRef]
  21. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, 1985).
  23. M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007). [CrossRef]
  24. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006). [CrossRef]
  25. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef] [PubMed]
  26. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  27. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007). [CrossRef]
  28. L. F. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  29. J. P. Hugonin and P. Lalanne, Reticolo Software for Grating Analysis (Institut d’Optique, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited