OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 7 — Jul. 1, 2010
  • pp: 1671–1678

Large incident angle tolerance of guided-mode resonant gratings by light coupling via waveguide end faces

Akira Sato, Nobuyuki Iwai, and Makoto Sato  »View Author Affiliations

JOSA A, Vol. 27, Issue 7, pp. 1671-1678 (2010)

View Full Text Article

Acrobat PDF (947 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By designing and fabricating appropriate structures, guided-mode resonant gratings can be used as optical filters to attain extremely narrow bandwidths. This high performance makes it difficult to couple light into a waveguide via the grating, which demands extremely high mechanical accuracy to adjust the incident conditions. This paper shows both numerically and experimentally that the incident angle tolerance is significantly wider when the incident light is coupled into the waveguide through an end face rather than via the grating.

© 2010 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(230.1950) Optical devices : Diffraction gratings
(230.7400) Optical devices : Waveguides, slab
(290.3700) Scattering : Linewidth
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(310.2785) Thin films : Guided wave applications

ToC Category:
Diffraction and Gratings

Original Manuscript: February 17, 2010
Revised Manuscript: May 17, 2010
Manuscript Accepted: May 18, 2010
Published: June 21, 2010

Akira Sato, Nobuyuki Iwai, and Makoto Sato, "Large incident angle tolerance of guided-mode resonant gratings by light coupling via waveguide end faces," J. Opt. Soc. Am. A 27, 1671-1678 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985). [CrossRef]
  2. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
  3. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence,” J. Opt. Soc. Am. A 17, 1221–1230 (2000). [CrossRef]
  4. Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135–1137 (2004). [CrossRef]
  5. M.-L. Wu, C.-L. Hsu, H.-C. Lan, H.-I. Huang, Y.-C. Liu, Z.-R. Tu, C.-C. Lee, J.-S. Lin, C.-C. Su, and J.-Y. Chang, “Authentication labels based on guided-mode resonant filters,” Opt. Lett. 32, 1614–1616 (2007). [CrossRef]
  6. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998). [CrossRef]
  7. F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behavior of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1, 545–551 (1999). [CrossRef]
  8. A. Sentenac and A.-L. Fehrembach, “Angular tolerant resonant grating filters under oblique incidence,” J. Opt. Soc. Am. A 22, 475–480 (2005). [CrossRef]
  9. A.-L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005). [CrossRef]
  10. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” J. Opt. Soc. Am. A 18, 2109–2120 (2001). [CrossRef]
  11. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt. 41, 1241–1245 (2002). [CrossRef]
  12. S. Boonruang, A. Greenwell, and M. G. Moharam, “Broadening the angular tolerance in two-dimensional grating resonance structures at oblique incidence,” Appl. Opt. 46, 7982–7992 (2007). [CrossRef]
  13. K. Tiefenthaler and W. Lukosz, “Integrated optical switches and gas sensors,” Opt. Lett. 9, 137–139 (1984). [CrossRef]
  14. P. M. Nellen, K. Tiefenthaler, and W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988). [CrossRef]
  15. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989). [CrossRef]
  16. M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970). [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  18. L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput. Phys. 73, 325–348 (1987). [CrossRef]
  19. V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 86, 414–439 (1990). [CrossRef]
  20. N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 40, 634–641 (1992). [CrossRef]
  21. C. C. Lu and W. C. Chew, “A multilevel algorithm for solving a boundary integral-equation of wave scattering,” Microwave Opt. Technol. Lett. 7, 466–470 (1994). [CrossRef]
  22. P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd ed. (Cambridge U. Press, 1996).
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  24. J. R. Mautz, N. Morita, and N. Kumagai, Integral Equation Methods for Electromagnetics (Artech House, 1991).
  25. L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184–1189 (1993). [CrossRef]
  26. A. Sato is preparing a paper to be called “Analysis of finite sized guided-mode resonant gratings by using the fast multiple boundary element method.”
  27. P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 1988), pp. 298–318.
  28. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited