OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1756–1763

Geodesic distance on non-singular coherency matrix space in polarization optics

V. Devlaminck and P. Terrier  »View Author Affiliations


JOSA A, Vol. 27, Issue 8, pp. 1756-1763 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001756


View Full Text Article

Enhanced HTML    Acrobat PDF (637 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We define a geodesic distance associated with the polarization space of non-singular coherency matrices. Its introduction on HPD(2) (the manifold of Hermitian positive definite matrices of dimension 2) can be directly related to the Jones calculus. The expression of distance and related notion of mean value in this particular metric space are also presented. We investigate the properties of this geodesic distance and the classical Euclidean one and their appropriateness for interpixel comparisons in a context of imaging polarimetry. Finally, results are presented for a geodesic version of the classical K-means clustering algorithm with simulated data and real data. The results demonstrate the advantages of the geodesic approach.

© 2010 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization
(100.4995) Image processing : Pattern recognition, metrics

ToC Category:
Physical Optics

History
Original Manuscript: March 18, 2010
Revised Manuscript: May 20, 2010
Manuscript Accepted: June 7, 2010
Published: July 6, 2010

Citation
V. Devlaminck and P. Terrier, "Geodesic distance on non-singular coherency matrix space in polarization optics," J. Opt. Soc. Am. A 27, 1756-1763 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-8-1756


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef] [PubMed]
  2. V. Nourrit, J. M. Bueno, B. Vohnsen, and P. Arta, “Nonlinear registration for scanned retinal images: application to ocular polarimetry,” Appl. Opt. 47, 5341–5347 (2008). [CrossRef] [PubMed]
  3. A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Fluorescence polarization imaging for delineating nonmelanoma skin cancers,” Opt. Lett. 29, 2010–2012 (2004). [CrossRef] [PubMed]
  4. F. Boulvert, B. Boulbry, G. Le Brun, B. Le Jeune, S. Rivet, and J. Cariou, “Analysis of the depolarizing properties of irradiated pig skin,” J. Opt. A, Pure Appl. Opt. 7, 21–28 (2005). [CrossRef]
  5. S. Guyot, M. Anastasiadou, E. Deléchelle, and A. De Martino, “Registration scheme suitable to Mueller matrix imaging for biomedical applications,” Opt. Express 15, 7393–7400 (2007). [CrossRef] [PubMed]
  6. A. Kreuter, M. Zangerl, M. Schwarzmann, and M. Blumthaler, “All-sky imaging: a simple, versatile system for atmospheric research,” Appl. Opt. 48, 1091–1097 (2009). [CrossRef]
  7. P. Terrier, V. Devlaminck, and J. M. Charbois, “Segmentation of rough surfaces using a polarization imaging system,” J. Opt. Soc. Am. A 25, 423–430 (2008). [CrossRef]
  8. O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging,” Appl. Opt. 45, 4062–4068 (2006). [CrossRef] [PubMed]
  9. A. Bénière, F. Goudail, M. Alouini, and D. Dolf, “Degree of polarization estimation in the presence of nonuniform illumination and additive Gaussian noise,” J. Opt. Soc. Am. A 25, 919–929 (2008). [CrossRef]
  10. J. E. Ahmad and Y. Takakura, “Error analysis for rotating active Stokes–Mueller imaging polarimeters,” Opt. Lett. 31, 2858–2860 (2006). [CrossRef] [PubMed]
  11. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  12. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 37, 488–493 (1947).
  13. E. Wolf, “Coherence properties of partially polarized electromagnetic radiation,” Nuovo Cimento 13, 1165–1181 (1959). [CrossRef]
  14. K. Kim, L. Mandel, and E. Wolf, “Relationship between Jones and Mueller matrices for random media,” J. Opt. Soc. Am. A 4, 433–437 (1987). [CrossRef]
  15. E. S. Fry and G. W. Kattawar, “Relationships between elements of the Stokes matrix,” Appl. Opt. 20, 2811–2814 (1981). [CrossRef] [PubMed]
  16. S. R. Cloude, “Group theory and polarisation algebra,” Optik (Jena) 75, 26–36 (1986).
  17. R. Simon, “The connection between Mueller and Jones matrices of polarization optics,” Opt. Commun. 42, 293–297 (1982). [CrossRef]
  18. W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed. (Academic, 1986).
  19. P. T. Fletcher and S. C. Joshi, “Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors,” in Proceedings of Computer Vision Approaches to Medical Image Analysis (CVAMIA) Workshops (Springer, 2004), pp. 87–98.
  20. S. Helgason, Differential Geometry and Symmetric Spaces (Academic, 1962).
  21. R. Verma, P. Khurd, and C. Davatzikos, “On analyzing diffusion tensor images by identifying manifold structure using Isomaps,” IEEE Trans. Med. Imaging 26, 772–778 (2007). [CrossRef] [PubMed]
  22. J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science 290, 2319–2323 (2000). [CrossRef] [PubMed]
  23. C. J. C. Burges, “Geometric methods for feature extraction and dimensional reduction,” in Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers, L.Rokach and O.Maimon, eds. (Kluwer, 2005), pp. 59–92. [CrossRef]
  24. M. Fréchet, “Les éléments aléatoires de nature quelconque dans un espace distancié,” Ann. Inst. Henri Poincare 10, 215–310 (1948).
  25. X. Pennec, “Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements,” J. Math. Imaging Vision 25, 127–154 (2006). [CrossRef]
  26. H. Karcher, “Riemannian center of mass and mollifier smoothing,” Commun. Pure Appl. Math. 30, 509–541 (1977). [CrossRef]
  27. U. Grenander, Probabilities on Algebraic Structures (Wiley, 1963).
  28. C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras, “Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing,” J. Math. Imaging Vision 25, 423–444 (2006). [CrossRef]
  29. J. A. Hartigan, Clustering Algorithms, Wiley Series in Probability and Mathematical Statistics (Wiley, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited