OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1770–1782

Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results

Sapna A. Shroff, James R. Fienup, and David R. Williams  »View Author Affiliations

JOSA A, Vol. 27, Issue 8, pp. 1770-1782 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (896 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Structured illumination imaging uses multiple images of an object having different phase shifts in the sinusoidally patterned illumination to obtain lateral superresolution in stationary specimens in microscopy. In our recent work we have discussed a method to estimate these phase shifts a posteriori, allowing us to apply this technique to non-stationary objects such as in vivo tissue. Here we show experimental verification of our earlier simulations for phase shift estimation a posteriori. We estimated phase shifts in fluorescence microscopy images for an object having unknown, random translational motion and used them to obtain an artifact-free reconstruction having the expected superresolution.

© 2010 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.3020) Image processing : Image reconstruction-restoration
(100.6640) Image processing : Superresolution
(110.4850) Imaging systems : Optical transfer functions
(170.0180) Medical optics and biotechnology : Microscopy

ToC Category:
Image Processing

Original Manuscript: January 29, 2010
Revised Manuscript: June 8, 2010
Manuscript Accepted: June 9, 2010
Published: July 9, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Sapna A. Shroff, James R. Fienup, and David R. Williams, "Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results," J. Opt. Soc. Am. A 27, 1770-1782 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Gustaffson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000). [CrossRef]
  2. M. Gustafsson, “Extended-resolution reconstruction of structured illumination microscopy data,” in Computational Optical Sensing and Imaging Topical Meetings on CD-ROM, Technical Digest (Optical Society of America, 2005), paper JMA2.
  3. M. Gustafsson, L. Shao, D. A. Agard, and J. W. Sedat, “Fluorescence microscopy without resolution limit,” in Biophotonics/Optical Interconnects and VLSI Photonics/WBM Microcavities, 2004 Digest of the LEOS Summer Topical Meetings (IEEE, 2004), Vol. 2, pp. 28–30.
  4. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999). [CrossRef]
  5. M. Gustafsson, “Extended resolution fluorescence microscopy,” Curr. Opin. Struct. Biol. 9, 627–634 (1999). [CrossRef] [PubMed]
  6. W. Lukosz, “Optical systems with resolving powers exceeding the classical limits II,” J. Opt. Soc. Am. 57, 932–941 (1967). [CrossRef]
  7. D. Mendlovic, A. W. Lohmann, N. Konforti, I. Kiryuschev, and Z. Zalevsky, “One-dimensional superresolution optical system for temporally restricted objects,” Appl. Opt. 36, 2353–2359 (1997). [CrossRef] [PubMed]
  8. E. Sabo, Z. Zalevsky, D. Mendlovic, N. Konforti, and I. Kiryuschev, “Superresolution optical system using three fixed generalized gratings: experimental results,” J. Opt. Soc. Am. A 18, 514–520 (2001). [CrossRef]
  9. A. Shemer, Z. Zalevsky, D. Mendlovic, N. Konforti, and E. Marom, “Time multiplexing superresolution based on interference grating projection,” Appl. Opt. 41, 7397–7404 (2002). [CrossRef] [PubMed]
  10. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782(1994). [CrossRef] [PubMed]
  11. X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: approaching the resolution limits of optics,” Opt. Lett. 24, 124–126 (1999). [CrossRef]
  12. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424–1426 (2003). [CrossRef] [PubMed]
  13. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006). [CrossRef] [PubMed]
  14. G. E. Cragg and P. T. C. So, “Lateral resolution enhancement with standing evanescent waves,” Opt. Lett. 25, 46–48 (2000). [CrossRef]
  15. E. Chung, D. Kim, and P. T. So, “Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy,” Opt. Lett. 31, 945–947 (2006). [CrossRef] [PubMed]
  16. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1983).
  17. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Phase-shift estimation in sinusoidally illuminated images for lateral superresolution,” J. Opt. Soc. Am. A 26, 413–424 (2009). [CrossRef]
  18. S. A. Shroff, J. R. Fienup, and D. R. Williams, “OTF compensation in structured illumination superresolution images,” Proc. SPIE 7094, 709402-1–11 (2008).
  19. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Phase shift estimation in structured illumination imaging for lateral resolution enhancement,” in Signal Recovery and Synthesis, Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper SMA2.
  20. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Estimation of phase shifts in structured illumination for high resolution imaging,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper FMH4.
  21. G. Strang, Linear Algebra and Its Applications (Thomson Learning, Inc., 1998).
  22. L. P. Yaroslavsky and H. J. Caulfield, “Deconvolution of multiple images of the same object,” Appl. Opt. 33, 2157–2162 (1994). [CrossRef] [PubMed]
  23. C. W. Helstrom, “Image restoration by the method of least squares,” J. Opt. Soc. Am. 57, 297–303 (1967). [CrossRef]
  24. D. J. Tolhurst, Y. Tadmore, and T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229–232 (1992). [CrossRef] [PubMed]
  25. A. van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vision Res. 36, 2759–2770 (1996). [CrossRef] [PubMed]
  26. D. R. Gerwe, M. Jain, B. Calef, and C. Luna, “Regularization for nonlinear image restoration using a prior on the object power spectrum,” in Proc. SPIE 5896, 1–15 (2005).
  27. S. T. Thurman and J. R. Fienup, “Wiener reconstruction of undersampled imagery,” J. Opt. Soc. Am. A 26, 283–288 (2009). [CrossRef]
  28. L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216, 165–174 (2004). [CrossRef] [PubMed]
  29. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33, 156–158 (2008). [CrossRef] [PubMed]
  30. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy—a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599–1609 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited