OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1783–1790

Optical properties of a nanomatch-like plasmonic structure

Xudong Cui, Weihua Zhang, Daniel Erni, and Lixin Dong  »View Author Affiliations

JOSA A, Vol. 27, Issue 8, pp. 1783-1790 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (685 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical properties of a match-like plasmonic nanostructure are numerically investigated using full-wave finite-difference time-domain analysis in conjunction with dispersive material models. This work is mainly motivated by the developed technique enabling reproducible fabrication of nanomatch structures as well as the growing applications that utilize the localized field enhancement in plasmonic nanostructures. Our research revealed that due to the pronounced field enhancement and larger resonance tunabilities, some nanomatch topologies show potentials for various applications in the field of, e.g., sensing as well as a novel scheme for highly reproducible tips in scanning near field optical microscopy, among others. Despite the additional degrees of freedom that are offered by the composite nature of the proposed nanomatch topology, the paper also reflects on a fundamental complication intrinsic to the material interfaces especially in the nanoscale: stoichiometric mixing. We conclude that the specificity in material modeling will become a significant issue in future research on functionalized composite nanostructures.

© 2010 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

Original Manuscript: March 19, 2010
Revised Manuscript: June 8, 2010
Manuscript Accepted: June 11, 2010
Published: July 9, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Xudong Cui, Weihua Zhang, Daniel Erni, and Lixin Dong, "Optical properties of a nanomatch-like plasmonic structure," J. Opt. Soc. Am. A 27, 1783-1790 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  2. F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108, 17290–17294 (2004). [CrossRef]
  3. C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Dreyek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004). [PubMed]
  4. N. Halas, “Playing with plasmons: Tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30, 362–367 (2005). [CrossRef]
  5. Z. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430, 61–65 (2004). [CrossRef] [PubMed]
  6. L. J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002). [CrossRef] [PubMed]
  7. F. S. Ou, M. M. Shaijumon, L. J. Ci, D. Benicewicz, R. Vajtai, and P. M. Ajayan, “Multisegmented one dimensional hybrid structures of carbon nanotubes and metal nanowires,” Appl. Phys. Lett. 89, 243122 (2006). [CrossRef]
  8. L. X. Dong, X. Y. Tao, L. Zhang, B. J. Nelson, and X. B. Zhang, “Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes,” Nano Lett. 7, 58–63 (2007). [CrossRef] [PubMed]
  9. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006). [CrossRef] [PubMed]
  10. C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: Synthesis and plasmonic properties,” J. Phys. Chem. B 107, 7327–7333 (2003). [CrossRef]
  11. J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113, 3110–3115 (2009). [CrossRef]
  12. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moonstructures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005). [CrossRef] [PubMed]
  13. S. Kim, K. L. Shuford, H. M. Bok, S. K. Kim, and S. H. Park, “Intraparticle surface plasmon coupling in quasi one dimensional nanostructures,” Nano Lett. 8, 800–804 (2008). [CrossRef] [PubMed]
  14. X. Wang and C. S. Ozkan, “Multisegment nanowire sensors for the detection of DNA molecules,” Nano Lett. 8, 398–404 (2008). [CrossRef] [PubMed]
  15. L. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309, 113–115 (2005). [CrossRef] [PubMed]
  16. www.cst.com.
  17. W. H. Zhang, T. Schmid, B. S. Yeo, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007). [CrossRef]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 2005).
  19. Y. Hao and C. J. Railton, “Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes,” IEEE Trans. Microwave Theory Tech. 46, 82–88 (1998). [CrossRef]
  20. N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997). [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  22. A. Sutradhar, G. H. Paulino, and L. J. Gray, Symmetric Galerkin Boundary Element Method (Springer-Verlag, 2008).
  23. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef] [PubMed]
  24. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  25. A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2000). [CrossRef]
  26. Z. L. Wang, Nanowires and Nanobelts: Metal and Semiconductor Nanowires (Birkhaeuser, 2005).
  27. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  28. A. V. Zayats, “Electromagnetic field enhancement in the context of apertureless near field microscopy,” Opt. Commun. 161, 156–162 (1999). [CrossRef]
  29. X. Cui, W. Zhang, B. Yeo, R. Zenobi, Ch. Hafner, and D. Erni, “Tuning the resonance frequency of Ag-coated dielectric tips,” Opt. Express 15, 8309–8316 (2007). [CrossRef] [PubMed]
  30. A. Downes, D. Salter, and A. Elfick, “Simulations of atomic resolution tip-enhanced optical microscopy,” Opt. Express 14, 11324–11329 (2006). [CrossRef] [PubMed]
  31. X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci. 7, 1610–1615 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited