OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1803–1811

Automated method for optimization of electric field distributions and optical parameters in thin-film polarizers

Naibo Chen, Yonggang Wu, Zhenhua Wang, Leijie Ling, Zihuan Xia, Heyun Wu, and Gang Lv  »View Author Affiliations


JOSA A, Vol. 27, Issue 8, pp. 1803-1811 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001803


View Full Text Article

Enhanced HTML    Acrobat PDF (1744 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient method based on the modified needle optimization technique is proposed to design high-power laser thin-film polarizers. In order to minimize the influence of the standing-wave electric field on the laser-induced damage threshold of the polarizers, a crucial optimization parameter, the maximum electric field intensity in the high-refractive-index layers, is included in the proposed merit function. The electric field distribution and optical performance obtained by the proposed method are studied. Improved electric field and identical optical characteristics are observed in comparison with those of the designs obtained by optimizing the traditional merit function without a standing-wave electric field term and by the analytical synthesis method.

© 2010 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(310.1620) Thin films : Interference coatings
(310.4165) Thin films : Multilayer design
(310.5448) Thin films : Polarization, other optical properties

ToC Category:
Thin Films

History
Original Manuscript: February 24, 2010
Revised Manuscript: May 24, 2010
Manuscript Accepted: June 7, 2010
Published: July 14, 2010

Citation
Naibo Chen, Yonggang Wu, Zhenhua Wang, Leijie Ling, Zihuan Xia, Heyun Wu, and Gang Lv, "Automated method for optimization of electric field distributions and optical parameters in thin-film polarizers," J. Opt. Soc. Am. A 27, 1803-1811 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-8-1803


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 599119 (2005). [CrossRef]
  2. L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, “High-energy petawatt capability for the OMEGA laser,” Opt. Photonics News 16, 30–36 (2005). [CrossRef]
  3. B. Geenen, H. Leplan, B. Pinot, W. Alexandre, P. Pally, L. A. Roussel, and O. Lam, “Polarizers at 1.053 μm deposited on silica substrate for high laser fluences applications under vacuum,” Proc. SPIE 2776, 270–278 (1996). [CrossRef]
  4. E. Lavastre, J. Ne`auport, J. Duchesne, H. Leplan, and F. Houbre, “Polarizers coatings for the Laser MegaJoule prototype,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), paper TuF3.
  5. F. Rainer, F. P. De Marco, M. C. Staggs, M. R. Kozlowski, L. J. Atherton, and L. M. Sheehan, “A historical perspective on fifteen years of laser damage thresholds at LLNL,” Proc. SPIE 2114, 9–24 (1994). [CrossRef]
  6. R. Chow, M. Runkel, and J. R. Taylor, “Laser damage testing of small optics for the National Ignition Facility,” Appl. Opt. 44, 3527–3531 (2005). [CrossRef] [PubMed]
  7. A. F. Stewart and A. H. Guenther, “Laser-induced damage: an introduction,” Appl. Opt. 23, 3741–3742 (1984). [CrossRef] [PubMed]
  8. P. Gu and J. Tang, “Laser-induced damage resistance of thin-film polarizers prepared by ion-assisted deposition,” Opt. Lett. 19, 81–83 (1994). [CrossRef] [PubMed]
  9. C. J. Stolz, F. Y. Genin, T. A. Reitter, and N. Molau, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1999). [CrossRef]
  10. F. Y. Genin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2–SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1999). [CrossRef]
  11. F. Y. Genin, C. J. Stolz, T. Reitter, and M. R. Kozlowski, “Effect of electric field distribution on the morphologies of laser-induced damage in hafnia-silica multilayer polarizers,” Proc. SPIE 2966, 342–352 (1999). [CrossRef]
  12. W. W. Buchman, “Index matching reduces peak electric fields in thin-film polarizers,” Appl. Opt. 14, 1220–1224 (1975). [CrossRef] [PubMed]
  13. J. H. Apfel, “Optical coating design with reduced electric field intensity,” Appl. Opt. 16, 1880–1885 (1977). [CrossRef] [PubMed]
  14. J. C. Monga, “Multilayer thin-film polarizers with reduced electric-field intensity,” J. Mod. Opt. 36, 769–784 (1989). [CrossRef]
  15. P. F. Gu and J. F. Tang, “Design and preparation of polarizers used in high power laser systems,” Proc. SPIE 1158, 351–356 (1989).
  16. C. J. Stolz, “Brewster’s angle thin film plate polarizer design study from an electric field perspective,” Proc. SPIE 3738, 347–353 (1999). [CrossRef]
  17. S. A. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontieres, 1992), pp. 123–140.
  18. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996). [CrossRef] [PubMed]
  19. A. V. Tikhonravov, M. K. Trubetskov, V. V. Protopopov, and A. V. Voronov, “Application of the needle optimization technique to the design of X-ray mirrors,” Proc. SPIE 3738, 248–254 (1999). [CrossRef]
  20. A. V. Tikhonravov and M. K. Trubetskov, “Design of coatings for wide angular range applications,” Proc. SPIE 3133, 16–20 (1997). [CrossRef]
  21. K. Y. Yang and X. W. Long, “Design of high-precision, large-angle incident, nonpolarization anti-reflection coatings,” Chin. J. Lasers A29, 703–706 (2002).
  22. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004). [CrossRef]
  23. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46, 704–710 (2007). [CrossRef] [PubMed]
  24. J. H. Apfel, J. S. Matteucci, B. E. Newnam, and D. H. Gill, The Role of Electric Field Strength in Laser Damage of Dielectric Multilayers, Vol. 462 of NBS Special Publication (U.S. Government Printing Office, 1976), p. 301.
  25. G. Abromavicius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007). [CrossRef]
  26. A. V. Tikhonravov and M. K. Trubetskov, “Estimation for the maximum of electric field in multilayer high-reflectors,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2004), paper TuB9.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited