OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1818–1827

Centroid displacement statistics of the eye aberration

Eliseo Pailos, Abbas Ommani, Luis Diaz-Santana, and Salvador Bará  »View Author Affiliations


JOSA A, Vol. 27, Issue 8, pp. 1818-1827 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001818


View Full Text Article

Acrobat PDF (636 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss a method for the study of the spatial statistics of the ocular aberrations, based on the direct use of the Hartmann–Shack centroid displacements, avoiding the wavefront reconstruction step. Centroid diagrams are introduced as a helpful aid to visualize basic properties of the aberration datasets, and slope-related second-order statistical functions are applied to check the compatibility between the experimental data and different models for the aberration statistics. Preliminary results suggest that no single power-law spectrum (e.g., Kolmogorov’s) is able to represent the whole range of spatial statistics of individual eye fluctuations and that more elaborated models, including at least the contribution of a relevant defocus fluctuation term, are required. This centroid-based approach allows for an easier intercomparison of results between laboratories and avoids the bias and information loss associated with the estimation of a reduced number of Zernike coefficients from a much wider slope data set.

© 2010 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: December 2, 2009
Revised Manuscript: June 11, 2010
Manuscript Accepted: June 16, 2010
Published: July 16, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Eliseo Pailos, Abbas Ommani, Luis Diaz-Santana, and Salvador Bará, "Centroid displacement statistics of the eye aberration," J. Opt. Soc. Am. A 27, 1818-1827 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-8-1818


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  2. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  3. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001). [CrossRef]
  4. M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002). [CrossRef]
  5. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002). [CrossRef]
  6. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002). [CrossRef]
  7. D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51, 1969–1980 (2004). [CrossRef]
  8. M. Zhu, M. J. Collins, and D. R. Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 24, 562–571 (2004). [CrossRef]
  9. K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, “Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system,” J. Opt. Soc. Am. A 22, 1241–1250 (2005). [CrossRef]
  10. A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic Physiol. Opt. 29, 256–263 (2009). [CrossRef]
  11. T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refractive Surg. 32, 2064–2074 (2006). [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999).
  13. L. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, in Vision Science and Its Applications, V.Lakshminarayanan, ed. (Optical Society of America, 2000), pp. 232–244.
  14. J. Herrmann, “Cross coupling and aliasing in modal wave-front estimation,” J. Opt. Soc. Am. 71, 989–992 (1981). [CrossRef]
  15. L. Diaz-Santana, G. Walker, and S. Bará, “Sampling geometries for ocular aberrometry: A model for evaluation of performance,” Opt. Express 13, 8801–8818 (2005). [CrossRef]
  16. O. Soloviev and G. Vdovin, “Hartmann–Shack test with random masks for modal wavefront reconstruction,” Opt. Express 13, 9570–9584 (2005). [CrossRef]
  17. S. Bará, P. Prado, J. Arines, and J. Ares, “Estimation-induced correlations of the Zernike coefficients of the eye aberration,” Opt. Lett. 31, 2646–2648 (2006). [CrossRef]
  18. S. Bará, “Characteristic functions of Hartmann–Shack wavefront sensors and laser-ray-tracing aberrometers,” J. Opt. Soc. Am. A 24, 3700–3707 (2007). [CrossRef]
  19. E. P. Wallner, “Optimal wave-front correction using slope measurements,” J. Opt. Soc. Am. 73, 1771–1776 (1983). [CrossRef]
  20. B. M. Welsh and C. S. Gardner, “Performance analysis of adaptive-optics systems using laser guide stars and slope sensors,” J. Opt. Soc. Am. A 6, 1913–1923 (1989). [CrossRef]
  21. M. C. Roggemann, “Optical-performance of fully and partially compensated adaptive optics systems using least-squares and minimum variance phase reconstructors,” Comput. Electr. Eng. 18, 451–466 (1992). [CrossRef]
  22. P. A. Bakut, V. E. Kirakosyants, V. A. Loginov, C. J. Solomon, and J. C. Dainty, “Optimal wavefront reconstruction from a Shack–Hartmann sensor by use of a Bayesian algorithm,” Opt. Commun. 109, 10–15 (1994). [CrossRef]
  23. V. V. Voitsekhovich, S. Bará, S. Ríos, and E. Acosta, “Minimum-variance phase reconstruction from Hartmann sensors with circular subpupils,” Opt. Commun. 148, 225–229 (1998). [CrossRef]
  24. V. V. Voitsekhovich and S. Bará, “Efficiency of optimum Kolmogorov estimators for different atmospheric statistics: Hartmann test,” Opt. Commun. 165, 163–170 (1999). [CrossRef]
  25. T. W. Nicholls, G. D. Boreman, and J. C. Dainty, “Use of a Shack–Hartmann wave-front sensor to measure deviations from a Kolmogorov phase spectrum,” Opt. Lett. 20, 2460–2462 (1995). [CrossRef]
  26. E. E. Silbaugh, “Characterization of atmospheric turbulence over long horizontal paths using optical slope measurements,” Master’s thesis (U.S. Air Force Institute of Technology, 1995).
  27. E. E. Silbaugh, B. M. Welsh, and M. C. Roggemann, “Characterization of atmospheric turbulence phase statistics using wave-front slope measurements,” J. Opt. Soc. Am. A 13, 2453–2460 (1996). [CrossRef]
  28. C. H. Rao, W. H. Jiang, and N. Ling, “Measuring the power-law exponent of an atmospheric turbulence phase power spectrum with a Shack–Hartmann wave-front sensor,” Opt. Lett. 24, 1008–1010 (1999). [CrossRef]
  29. S. Bará, “Measuring eye aberrations with Hartmann–Shack wave-front sensors: Should the irradiance distribution across the eye pupil be taken into account?” J. Opt. Soc. Am. A 20, 2237–2245 (2003). [CrossRef]
  30. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000). [CrossRef]
  31. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  32. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998), pp. 147–150, 273.
  33. M. C. Roggemann and B. Welsh, Imaging Through Turbulence (CRC, 1996).
  34. J. W. Goodman, Statistical Optics (Wiley, 2000).
  35. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 1991).
  36. H. H. Barrett and K. Myers, Foundations of Image Science (Wiley-Interscience, 2004).
  37. L. Diaz-Santana, V. Guériaux, G. Arden, and S. Gruppetta, “New methodology to measure the dynamics of ocular wave front aberrations during small amplitude changes of accommodation,” Opt. Express 15, 5649–5663 (2007). [CrossRef]
  38. G. Cao and X. Yu, “Accuracy analysis of a Hartmann–Shack wavefront sensor operated with a faint object,” Opt. Eng. (Bellingham) 33, 2331–2335 (1994). [CrossRef]
  39. A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, and V. I. Shmal’gauzen, “Measurement of eye aberrations in a speckle field,” Quantum Electron. 31, 1108–1112 (2001). [CrossRef]
  40. B. R. Frieden, Probability, Statistical Optics and Data Testing: A Problem Solving Approach (Springer-Verlag, 1991).
  41. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited