OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1840–1850

Tilted Gaussian beam propagation in inhomogeneous media

Yakir Hadad and Timor Melamed  »View Author Affiliations


JOSA A, Vol. 27, Issue 8, pp. 1840-1850 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001840


View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The present work is concerned with applying a ray-centered non-orthogonal coordinate system which is a priori matched to linearly-phased localized aperture field distributions. The resulting beam-waveobjects serve as the building blocks for beam-type spectral expansions of aperture fields in 2D inhomogeneous media that are characterized by a generic wave-velocity profile. By applying a rigorous paraxial-asymptotic analysis, a novel parabolic wave equation is obtained and termed “Non-orthogonal domain parabolic equation”—NoDope. Tilted Gaussian beams, which are exact solutions to this equation, match Gaussian aperture distributions over a plane that is tilted with respect to the beam-axes initial directions. A numerical example, which demonstrates the enhanced accuracy of the tilted Gaussian beams over the conventional ones, is presented as well.

© 2010 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(080.2720) Geometric optics : Mathematical methods (general)
(350.5500) Other areas of optics : Propagation

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: April 26, 2010
Revised Manuscript: June 11, 2010
Manuscript Accepted: June 16, 2010
Published: July 22, 2010

Citation
Yakir Hadad and Timor Melamed, "Tilted Gaussian beam propagation in inhomogeneous media," J. Opt. Soc. Am. A 27, 1840-1850 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-8-1840


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Cerveny, M. M. Popov, and I. Pŝencik, “Computation of wave fields in inhomogeneous media—Gaussian beam approach,” Geophys. J. R. Astron. Soc. 70, 109–128 (1982). [CrossRef]
  2. E. Heyman, “Pulsed beam propagation in an inhomogeneous medium,” IEEE Trans. Antennas Propag. 42, 311–319 (1994). [CrossRef]
  3. T. Melamed, “Phase-space Green’s functions for modeling time-harmonic scattering from smooth inhomogeneous objects,” J. Math. Phys. 46, 2232–2246 (2004). [CrossRef]
  4. S. Y. Shin and L. B. Felsen, “Gaussian beams in anisotropic media,” Appl. Phys. 5, 239–250 (1974). [CrossRef]
  5. R. Simon and N. Mukunda, “Shape-invariant anisotropic Gaussian Schell-model beams: a complete characterization,” J. Opt. Soc. Am. A 15, 1361–70 (1998). [CrossRef]
  6. E. Poli, G. V. Pereverzev, and A. G. Peeters, “Paraxial Gaussian wave beam propagation in an anisotropic inhomogeneous plasma,” Phys. Plasmas 6, 5–11 (1999). [CrossRef]
  7. L. I. Perez and M. T. Garea, “Propagation of 2D and 3D Gaussian beams in an anisotropic uniaxial medium: vectorial and scalar treatment,” Optik 111, 297–306 (2000).
  8. I. Tinkelman and T. Melamed, “Gaussian beam propagation in generic anisotropic wavenumber profiles,” Opt. Lett. 28, 1081–1083 (2003). [CrossRef] [PubMed]
  9. I. Tinkelman and T. Melamed, “Local spectrum analysis of field propagation in anisotropic media. I. Time-harmonic fields,” J. Opt. Soc. Am. A 22, 1200–1207 (2005). [CrossRef]
  10. I. Tinkelman and T. Melamed, “Local spectrum analysis of field propagation in anisotropic media. II. Time-dependent fields,” J. Opt. Soc. Am. A 22, 1208–1215 (2005). [CrossRef]
  11. A. G. Khatkevich, “Propagation of pulses and wave packets in dispersive gyrotropic crystals,” J. Appl. Spectrosc. 46, 203–207 (1987). [CrossRef]
  12. T. Melamed and L. B. Felsen, “Pulsed beam propagation in lossless dispersive media. I. Theory,” J. Opt. Soc. Am. A 15, 1268–1276 (1998). [CrossRef]
  13. T. Melamed and L. B. Felsen, “Pulsed beam propagation in lossless dispersive media. II. A numerical example,” J. Opt. Soc. Am. A 15, 1277–1284 (1998). [CrossRef]
  14. T. Melamed and L. B. Felsen, “Pulsed beam propagation in dispersive media via pulsed plane wave spectral decomposition,” IEEE Trans. Antennas Propag. 48, 901–908 (2000). [CrossRef]
  15. A. P. Kiselev, “Localized light waves: paraxial and exact solutions of the wave equation (a review),” Opt. Spectrosc. 102, 603–622 (2007). [CrossRef]
  16. A. Shlivinski, E. Heyman, A. Boag, and C. Letrou, “A phase-space beam summation formulation for ultra wideband radiation,” IEEE Trans. Antennas Propag. 52, 2042–2056 (2004). [CrossRef]
  17. A. Shlivinski, E. Heyman, and A. Boag, “A pulsed beam summation formulation for short pulse radiation based on windowed radon transform (WRT) frames,” IEEE Trans. Antennas Propag. 53, 3030–3048 (2005). [CrossRef]
  18. T. Melamed, “Exact beam decomposition of time-harmonic electromagnetic waves,” J. Electromagn. Waves Appl. 23, 975–986 (2009).
  19. B. Z. Steinberg, E. Heyman, and L. B. Felsen, “Phase space beam summation for time-harmonic radiation from large apertures,” J. Opt. Soc. Am. A 8, 41–59 (1991). [CrossRef]
  20. B. Z. Steinberg, E. Heyman, and L. B. Felsen, “Phase space beam summation for time dependent radiation from large apertures: Continuous parametrization,” J. Opt. Soc. Am. A 8, 943–958 (1991). [CrossRef]
  21. T. Melamed, “Phase-space beam summation: A local spectrum analysis for time-dependent radiation,” J. Electromagn. Waves Appl. 11, 739–773 (1997). [CrossRef]
  22. M. A. Leontovich and V. A. Fock, “Solution of the problem of EM wave propagation along the earth surface by the parabolic equation method,” J. Phys. 10, 13 (1946).
  23. G. D. Malyuzhinets, “Progress in understanding diffraction phenomena (in Russian),” Sov. Phys. Usp. 69, 321–334 (1959).
  24. A. V. Popov, “Numerical solution of the wedge diffraction problem by the transversal diffusion method (in Russian),” Sov. Phys. Acoust. 15, 226–233 (1969).
  25. S. N. Vlasov and V. I. Talanov, “The parabolic equation in the theory of wave propagation,” Radiophys. Quantum Electron. 38, 1–12 (1995). [CrossRef]
  26. M. Levys, Parabolic Equation Methods for Electromagnetic Wave Propagation (The Institution of Electrical Engineers, 2000). [CrossRef]
  27. C. Chapman, Fundamentals of Seismic Wave Propagation (Cambridge Univ. Press, 2004). [CrossRef]
  28. J. A. Arnaud and H. Kogelnik, “Gaussian light beams with general astigmatism,” Appl. Opt. 8, 1687–1693 (1969). [CrossRef] [PubMed]
  29. G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett. 7, 684–685 (1971). [CrossRef]
  30. S. D. Patil, S. T. Navare, M. V. Takale, and M. B. Dongare, “Self-focusing of cosh-Gaussian laser beams in a parabolic medium with linear absorption,” Opt. Lasers Eng. 47, 604–606 (2009). [CrossRef]
  31. Y. Hadad and T. Melamed, “Non-orthogonal domain parabolic equation and its Gaussian beam solutions,” IEEE Trans. Antennas Propag. 58, 1164–1172 (2010). [CrossRef]
  32. Y. Hadad and T. Melamed, “Parameterization of the tilted Gaussian beam waveobjects,” PIER 102, 65–80 (2010). [CrossRef]
  33. V. M. Babič and V. S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods (Springer-Verlag, 1991).
  34. E. Heyman and T. Melamed, “Certain considerations in aperture synthesis of ultrawideband/short-pulse radiation,” IEEE Trans. Antennas Propag. 42, 518–525 (1994). [CrossRef]
  35. E. Heyman and T. Melamed, “Space-time representation of ultra wideband signals,” in Advances in Imaging and Electron Physics, Vol. 103 (Elsevier, 1998), pp.1–63. [CrossRef]
  36. A. Shlivinski, E. Heyman, and A. Boag, “A phase-space beam summation formulation for ultrawide-band radiation—Part II: A multiband scheme,” IEEE Trans. Antennas Propag. 53, 948–957 (2005). [CrossRef]
  37. A. P. Wills, Vector Analysis with an Introduction to Tensor Analysis (Dover, 1958).
  38. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).
  39. E. Heyman and L. B. Felsen, “Real and complex spectra—a generalization of WKBJ seismograms,” Geophys. J. R. Astron. Soc. 91, 1087–1126 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited