OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1878–1884

Three-dimensional dispersive metallic photonic crystals with a bandgap and a high cutoff frequency

Ma Luo and Qing Huo Liu  »View Author Affiliations


JOSA A, Vol. 27, Issue 8, pp. 1878-1884 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001878


View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The goal of this work is to analyze three-dimensional dispersive metallic photonic crystals (PCs) and to find a structure that can provide a bandgap and a high cutoff frequency. The determination of the band structure of a PC with dispersive materials is an expensive nonlinear eigenvalue problem; in this work we propose a rational-polynomial method to convert such a nonlinear eigenvalue problem into a linear eigenvalue problem. The spectral element method is extended to rapidly calculate the band structure of three-dimensional PCs consisting of realistic dispersive materials modeled by Drude and Drude–Lorentz models. Exponential convergence is observed in the numerical experiments. Numerical results show that, at the low frequency limit, metallic materials are similar to a perfect electric conductor, where the simulation results tend to be the same as perfect electric conductor PCs. Band structures of the scaffold structure and semi-woodpile structure metallic PCs are investigated. It is found that band structures of semi-woodpile PCs have a very high cutoff frequency as well as a bandgap between the lowest two bands and the higher bands.

© 2010 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.5298) Materials : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: April 7, 2010
Revised Manuscript: June 8, 2010
Manuscript Accepted: June 18, 2010
Published: July 30, 2010

Citation
Ma Luo and Qing Huo Liu, "Three-dimensional dispersive metallic photonic crystals with a bandgap and a high cutoff frequency," J. Opt. Soc. Am. A 27, 1878-1884 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-8-1878


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002). [CrossRef] [PubMed]
  2. D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996). [CrossRef] [PubMed]
  3. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000). [CrossRef]
  4. A. L. Pokrovsky, V. Kamaev, C. Y. Li, Z. V. Vardeny, A. L. Efros, D. A. Kurdyukov, and V. G. Golubev, “Theoretical and experimental studies of metal-infiltrated opals,” Phys. Rev. B 71, 165114 (2005). [CrossRef]
  5. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004). [CrossRef] [PubMed]
  6. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002). [CrossRef] [PubMed]
  7. P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar,“Negative refraction and left-handed electromagnetism in microwave photonic crystals,” Phys. Rev. Lett. 92, 127401 (2004). [CrossRef] [PubMed]
  8. M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, and D. D. Crouch, “Waveguides in three-dimensional metallic photonic band-gap materials,” Phys. Rev. B 60, 4426–4429 (1999). [CrossRef]
  9. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996). [CrossRef]
  10. A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83, 5274–5277 (1999). [CrossRef]
  11. H. van der Lem, A. Tip, and A. Moroz, “Band structure of absorptive two-dimensional photonic crystals,” J. Opt. Soc. Am. B 20, 1334–1341 (2003). [CrossRef]
  12. A. Tip, “Some mathematical properties of Maxwell’s equations for macroscopic dielectrics,” J. Math. Phys. 47, 012902 (2006). [CrossRef]
  13. J.-M. Combes, B. Gralak, and A. Tip, “Spectral properties of absorptive photonic crystals,” in Waves in Periodic and Random Media, Vol. 339 of Contemporary Mathematics, P.Kuchment, ed. (American Mathematical Society, 2003), pp. 1–13. [CrossRef]
  14. G. C. Cohen, Higher-order Numerical Methods for Transient Wave Equations (Springer, 2001).
  15. J.-H. Lee and Q. H. Liu, “An efficient 3-D spectral element method for Schrodinger equation in nanodevice simulation,” IEEE Trans. Comput.-Aided Des. 24, 1848–1858 (2005). [CrossRef]
  16. J.-H. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE Trans. Microwave Theory Tech. 54, 437–444 (2006). [CrossRef]
  17. J.-H. Lee and Q. H. Liu, “A 3-D spectral-element time-domain method for electromagnetic simulation,” IEEE Trans. Microwave Theory Tech. 55, 983–991 (2007). [CrossRef]
  18. A. T. Patera, “A spectral element method for fluid dynamics: Laminar flow in a channel expansion,” J. Comput. Phys. 54, 468–488 (1984). [CrossRef]
  19. M. Luo, Q. H. Liu, and Z. Li, “Spectral element method for band structures of two-dimensional anisotropic photonic crystals,” Phys. Rev. E 79, 026705 (2009). [CrossRef]
  20. M. Luo and Q. H. Liu, “A spectral element method for band structures of three-dimensional anisotropic photonic crystals,” Phys. Rev. E 80, 056702 (2009). [CrossRef]
  21. M. Luo and Q. H. Liu, “Accurate determination of band structures of two-dimensional dispersive anisotropic photonic crystals by the spectral element method,” J. Opt. Soc. Am. A 26, 1598–1605 (2009). [CrossRef]
  22. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006). [CrossRef] [PubMed]
  23. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold [J. Chem. Phys. 125, 164705 (2006)],” J. Chem. Phys. 127, 189901 (2007). [CrossRef]
  24. P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, “Double photonic bandgap hollow-core photonic crystal fiber,” Opt. Express 17, 16238–16243 (2009). [CrossRef] [PubMed]
  25. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  26. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998). [CrossRef]
  27. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000). [CrossRef] [PubMed]
  28. B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, “Theoretical study of photonic band gaps in woodpile crystals,” Phys. Rev. E 67, 066601 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited