OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1885–1895

Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space–bandwidth product

Figen S. Oktem and Haldun M. Ozaktas  »View Author Affiliations


JOSA A, Vol. 27, Issue 8, pp. 1885-1895 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001885


View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Linear canonical transforms (LCTs) form a three-parameter family of integral transforms with wide application in optics. We show that LCT domains correspond to scaled fractional Fourier domains and thus to scaled oblique axes in the space–frequency plane. This allows LCT domains to be labeled and ordered by the corresponding fractional order parameter and provides insight into the evolution of light through an optical system modeled by LCTs. If a set of signals is highly confined to finite intervals in two arbitrary LCT domains, the space–frequency (phase space) support is a parallelogram. The number of degrees of freedom of this set of signals is given by the area of this parallelogram, which is equal to the bicanonical width product but usually smaller than the conventional space–bandwidth product. The bicanonical width product, which is a generalization of the space–bandwidth product, can provide a tighter measure of the actual number of degrees of freedom, and allows us to represent and process signals with fewer samples.

© 2010 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.2590) Fourier optics and signal processing : ABCD transforms
(080.2730) Geometric optics : Matrix methods in paraxial optics
(070.2025) Fourier optics and signal processing : Discrete optical signal processing
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms
(050.5082) Diffraction and gratings : Phase space in wave options

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: March 29, 2010
Manuscript Accepted: May 25, 2010
Published: July 30, 2010

Citation
Figen S. Oktem and Haldun M. Ozaktas, "Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space–bandwidth product," J. Opt. Soc. Am. A 27, 1885-1895 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-8-1885


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Toraldo di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45, 497–499 (1955). [CrossRef]
  2. D. Gabor, “Light and information,” in Progress in Optics, Vol. I, E.Wolf, ed. (Elsevier, 1961), Chap. 4, pp. 109–153. [CrossRef]
  3. G. Toraldo di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. 59, 799–803 (1969). [CrossRef] [PubMed]
  4. F. Gori and G. Guattari, “Effects of coherence on the degrees of freedom of an image,” J. Opt. Soc. Am. 61, 36–39 (1971). [CrossRef]
  5. F. Gori and G. Guattari, “Shannon number and degrees of freedom of an image,” Opt. Commun. 7, 163–165 (1973). [CrossRef]
  6. F. Gori and G. Guattari, “Degrees of freedom of images from point-like-element pupils,” J. Opt. Soc. Am. 64, 453–458 (1974). [CrossRef]
  7. F. Gori, S. Paolucci, and L. Ronchi, “Degrees of freedom of an optical image in coherent illumination, in the presence of aberrations,” J. Opt. Soc. Am. 65, 495–501 (1975). [CrossRef]
  8. F. Gori and L. Ronchi, “Degrees of freedom for scatterers with circular cross section,” J. Opt. Soc. Am. 71, 250–258 (1981). [CrossRef]
  9. L. Ronchi and F. Gori, “Degrees of freedom for spherical scatterers,” Opt. Lett. 6, 478–480 (1981). [CrossRef] [PubMed]
  10. A. Starikov, “Effective number of degrees of freedom of partially coherent sources,” J. Opt. Soc. Am. 72, 1538–1544 (1982). [CrossRef]
  11. G. Newsam and R. Barakat, “Essential dimension as a well-defined number of degrees of freedom of finite-convolution operators appearing in optics,” J. Opt. Soc. Am. A 2, 2040–2045 (1985). [CrossRef]
  12. A. W. Lohmann, Optical Information Processing, lecture notes (Optik+Info, Post Office Box 51, Uttenreuth, Germany, 1986).
  13. F. Gori, “Sampling in optics,” in Advanced Topics in Shannon Sampling and Interpolation Theory (Springer, 1993), Chap. 2, pp. 37–83. [CrossRef]
  14. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996). [CrossRef]
  15. R. Piestun and D. A. B. Miller, “Electromagnetic degrees of freedom of an optical system,” J. Opt. Soc. Am. A 17, 892–902 (2000). [CrossRef]
  16. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).
  17. R. Solimene and R. Pierri, “Number of degrees of freedom of the radiated field over multiple bounded domains,” Opt. Lett. 32, 3113–3115 (2007). [CrossRef] [PubMed]
  18. K. B. Wolf, Integral Transforms in Science and Engineering (Plenum, 1979), Chap. 9: Construction and properties of canonical transforms.
  19. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979). [CrossRef]
  20. R. K. Luneburg, Mathematical Theory of Optics (Univ. of California Press, 1966).
  21. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
  22. R. Simon and K. B. Wolf, “Fractional Fourier transforms in two dimensions,” J. Opt. Soc. Am. A 17, 2368–2381 (2000). [CrossRef]
  23. M. Nazarathy and J. Shamir, “First-order optics—a canonical operator representation: lossless systems,” J. Opt. Soc. Am. 72, 356–364 (1982). [CrossRef]
  24. M. J. Bastiaans and T. Alieva, “Synthesis of an arbitrary ABCD system with fixed lens positions,” Opt. Lett. 31, 2414–2416 (2006). [CrossRef] [PubMed]
  25. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Optical system design for orthosymplectic transformations in phase space,” J. Opt. Soc. Am. A 23, 2494–2500 (2006). [CrossRef]
  26. M. J. Bastiaans and T. Alieva, “Classification of lossless first-order optical systems and the linear canonical transformation,” J. Opt. Soc. Am. A 24, 1053–1062 (2007). [CrossRef]
  27. T. Alieva and M. J. Bastiaans, “Properties of the linear canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007). [CrossRef]
  28. A. E. Siegman, Lasers (University Science Books, 1986).
  29. D. F. V. James and G. S. Agarwal, “The generalized Fresnel transform and its applications to optics,” Opt. Commun. 126, 207–212 (1996). [CrossRef]
  30. C. Palma and V. Bagini, “Extension of the Fresnel transform to ABCD systems,” J. Opt. Soc. Am. A 14, 1774–1779 (1997). [CrossRef]
  31. S. Abe and J. T. Sheridan, “Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: An operator approach,” J. Phys. A 27, 4179–4187 (1994). [CrossRef]
  32. S. Abe and J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994). [CrossRef] [PubMed]
  33. J. Hua, L. Liu, and G. Li, “Extended fractional Fourier transforms,” J. Opt. Soc. Am. A 14, 3316–3322 (1997). [CrossRef]
  34. B. Barshan, M. A. Kutay, and H. M. Ozaktas, “Optimal filtering with linear canonical transformations,” Opt. Commun. 135, 32–36 (1997). [CrossRef]
  35. F. S. Oktem, “Signal representation and recovery under partial information, redundancy, and generalized finite extent constraints,” Master’s thesis, (Bilkent Univ., Turkey, 2009).
  36. H. M. Ozaktas and O. Aytur, “Fractional Fourier domains,” Signal Process. 46, 119–124 (1995). [CrossRef]
  37. H. Zhao, Q.-W. Ran, J. Ma, and L.-Y. Tan, “On bandlimited signals associated with linear canonical transform,” IEEE Signal Process. Lett. 16, 343–345 (2009). [CrossRef]
  38. B. Deng, R. Tao, and Y. Wang, “Convolution theorems for the linear canonical transform and their applications,” Sci. China Ser. F, Inf. Sci. 49, 592–603 (2006). [CrossRef]
  39. G.-X. Xie, B.-Z. Li, and Z. Wang, “Identical relation of interpolation and decimation in the linear canonical transform domain,” in Proceedings of the International Conference on Signal Processing, ICSP 2008 (IEEE, 2008), pp. 72–75.
  40. K. K. Sharma and S. D. Joshi, “Uncertainty principle for real signals in the linear canonical transform domains,” IEEE Trans. Signal Process. 56, 2677–2683 (2008). [CrossRef]
  41. K. K. Sharma and S. D. Joshi, “Signal separation using linear canonical and fractional Fourier transforms,” Opt. Commun. 265, 454–460 (2006). [CrossRef]
  42. K. K. Sharma and S. D. Joshi, “Signal reconstruction from the undersampled signal samples,” Opt. Commun. 268, 245–252 (2006). [CrossRef]
  43. K. K. Sharma, “New inequalities for signal spreads in linear canonical transform domains,” Signal Process. 90, 880–884 (2010). [CrossRef]
  44. B.-Z. Li, R. Tao, and Y. Wang, “New sampling formulae related to linear canonical transform,” Signal Process. 87, 983–990 (2007). [CrossRef]
  45. A. Stern, “Uncertainty principles in linear canonical transform domains and some of their implications in optics,” J. Opt. Soc. Am. A 25, 647–652 (2008). [CrossRef]
  46. A. Stern, “Sampling of compact signals in offset linear canonical transform domains,” Signal Image Video Process. 1, 359–367 (2007). [CrossRef]
  47. H. M. Ozaktas and M. F. Erden, “Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems,” Opt. Commun. 143, 75–86 (1997). [CrossRef]
  48. H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995). [CrossRef]
  49. T. Alieva and M. J. Bastiaans, “Alternative representation of the linear canonical integral transform,” Opt. Lett. 30, 3302–3304 (2005). [CrossRef]
  50. F. S. Oktem and H. M. Ozaktas, “Exact relation between continuous and discrete linear canonical transforms,” IEEE Signal Process. Lett. 16, 727–730 (2009). [CrossRef]
  51. A. Stern, “Sampling of linear canonical transformed signals,” Signal Process. 86, 1421–1425 (2006). [CrossRef]
  52. J. J. Ding, “Research of fractional Fourier transform and linear canonical transform,” Ph.D. thesis (National Taiwan Univ., Taipei, Taiwan, 2001).
  53. X.-G. Xia, “On bandlimited signals with fractional Fourier transform,” IEEE Signal Process. Lett. 3, 72–74 (1996). [CrossRef]
  54. A. Zayed, “On the relationship between the Fourier and fractional Fourier transforms,” IEEE Signal Process. Lett. 3, 310–311 (1996). [CrossRef]
  55. C. Candan and H. M. Ozaktas, “Sampling and series expansion theorems for fractional Fourier and other transforms,” Signal Process. 83, 1455–1457 (2003). [CrossRef]
  56. T. Erseghe, P. Kraniauskas, and G. Carioraro, “Unified fractional Fourier transform and sampling theorem,” IEEE Trans. Signal Process. 47, 3419–3423 (1999). [CrossRef]
  57. R. Torres, P. Pellat-Finet, and Y. Torres, “Sampling theorem for fractional bandlimited signals: A self-contained proof. application to digital holography,” IEEE Signal Process. Lett. 13, 676–679 (2006). [CrossRef]
  58. R. Tao, B. Deng, W.-Q. Zhang, and Y. Wang, “Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain,” IEEE Trans. Signal Process. 56, 158–171 (2008). [CrossRef]
  59. L. Cohen, “Time-frequency distributions—a review,” Proc. IEEE 77, 941–981 (1989). [CrossRef]
  60. M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978). [CrossRef]
  61. M. J. Bastiaans, “Transport-equations for the Wigner distribution function,” Opt. Acta 26, 1265–1272 (1979). [CrossRef]
  62. M. J. Bastiaans, “Applications of the Wigner distribution function in optics,” in The Wigner Distribution: Theory and Applications in Signal Processing (Elsevier, 1997), pp. 375–426.
  63. A. Stern and B. Javidi, “Sampling in the light of Wigner distribution,” J. Opt. Soc. Am. A 21, 360–366 (2004). [CrossRef]
  64. A. Stern, “Why is the linear canonical transform so little known?” in 5th International Workshop on Information Optics, Toledo, Spain, 5–7 June 2006, pp. 225–234.
  65. A. Papoulis, Signal Analysis (McGraw-Hill, 1977).
  66. S.-C. Pei and J.-J. Ding, “Closed-form discrete fractional and affine Fourier transforms,” IEEE Trans. Signal Process. 48, 1338–1353 (2000). [CrossRef]
  67. B. M. Hennelly and J. T. Sheridan, “Fast numerical algorithm for the linear canonical transform,” J. Opt. Soc. Am. A 22, 928–937 (2005). [CrossRef]
  68. T. Erseghe, N. Laurenti, and V. Cellini, “A multicarrier architecture based upon the affine Fourier transform,” IEEE Trans. Commun. 53, 853–862 (2005). [CrossRef]
  69. H. Ozaktas, O. Arikan, M. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996). [CrossRef]
  70. H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt. Lett. 31, 35–37 (2006). [CrossRef] [PubMed]
  71. A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008). [CrossRef]
  72. A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals,”J. Opt. Soc. Am. A 27, 1288–1302 (2010). [CrossRef]
  73. B. M. Hennelly and J. T. Sheridan, “Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms,” J. Opt. Soc. Am. A 22, 917–927 (2005). [CrossRef]
  74. J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Additional sampling criterion for the linear canonical transform,” Opt. Lett. 33, 2599–2601 (2008). [CrossRef] [PubMed]
  75. J. J. Healy and J. T. Sheridan, “Sampling and discretization of the linear canonical transform,” Signal Process. 89, 641–648 (2009). [CrossRef]
  76. L. Cohen, Integral Time-Frequency Analysis (Prentice-Hall, 1995).
  77. O. Aytur and H. M. Ozaktas, “Non-orthogonal domains in phase space of quantum optics and their relation to fractional Fourier transforms,” Opt. Commun. 120, 166–170 (1995). [CrossRef]
  78. H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994). [CrossRef]
  79. J. Zhao, R. Tao, and Y. Wang, “Sampling rate conversion for linear canonical transform,” Signal Process. 88, 2825–2832 (2008). [CrossRef]
  80. J. J. Healy and J. T. Sheridan, “Cases where the linear canonical transform of a signal has compact support or is band-limited,” Opt. Lett. 33, 228–230 (2008). [CrossRef] [PubMed]
  81. L. Durak and O. Arikan, “Short-time Fourier transform: two fundamental properties and an optimal implementation,” IEEE Trans. Signal Process. 51, 1231–1242 (2003). [CrossRef]
  82. J. J. Healy and J. T. Sheridan, “Fast linear canonical transforms,” J. Opt. Soc. Am. A 27, 21–30 (2010). [CrossRef]
  83. J. J. Healy and J. T. Sheridan, “Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms,” Opt. Lett. 35, 947–949 (2010). [CrossRef] [PubMed]
  84. A. W. Lohmann, “The space-bandwidth product, applied to spatial filtering and holography,” Research Paper RJ-438, IBM San Jose Research Laboratory, San Jose, CA (1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited