OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 2078–2083

Measurement of the absolute wavefront curvature radius in a heterodyne interferometer

Gerald Hechenblaikner  »View Author Affiliations


JOSA A, Vol. 27, Issue 9, pp. 2078-2083 (2010)
http://dx.doi.org/10.1364/JOSAA.27.002078


View Full Text Article

Enhanced HTML    Acrobat PDF (132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an analytical derivation of the coupling parameter relating the angle between two interfering beams in a heterodyne interferometer to the differential phase signals detected by a quadrant photodiode. This technique, also referred to as differential wavefront sensing, is commonly used in space-based gravitational wave detectors to determine the attitude of a test mass in one of the interferometer arms from the quadrant diode signals. Successive approximations to the analytical expression are made to simplify the investigation of parameter dependencies. Motivated by our findings, we propose what we believe to be a new measurement method to accurately determine the absolute wavefront curvature of a single measurement beam. We also investigate the change in the coupling parameter when the interferometer “test mirror” is moved from its nominal position, an effect which mediates the coupling of mirror displacement noise into differential phase measurements.

© 2010 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(040.2840) Detectors : Heterodyne
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4640) Instrumentation, measurement, and metrology : Optical instruments

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 22, 2010
Revised Manuscript: July 28, 2010
Manuscript Accepted: July 29, 2010
Published: August 26, 2010

Citation
Gerald Hechenblaikner, "Measurement of the absolute wavefront curvature radius in a heterodyne interferometer," J. Opt. Soc. Am. A 27, 2078-2083 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-9-2078


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. I. Campbell and A. H. Greenaway, “Wavefront sensing: From historical roots to state-of-the-art,” in Astronomy with High Contrast Imaging III: Instrumental Techniques, Modelling and Data Processing, EAS Publications Series, M.Carbillet, ed. (EDP Sciences, 2006), Vol. 22, pp. 165–185.
  2. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953). [CrossRef]
  3. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988). [CrossRef] [PubMed]
  4. S. Barbero, J. Rubinstein, and L. N. Thibos, “Wavefront sensing and reconstruction from gradient and Laplacian data measured with a Hartmann–Shack sensor,” Opt. Lett. 31, 1845–1847 (2006). [CrossRef] [PubMed]
  5. J. Millerd, N. Brock, J. Hayes, B. Kimbrough, M. Novak, M. North-Morris, and J. C. Wyant, “Modern approaches in phase measuring metrology,” Proc. SPIE 5856, 14–22 (2005). [CrossRef]
  6. F. Guzman Cervantes, G. Heinzel, A. F. García Marín, V. Wand, F. Steier, O. Jennrich, and K. Danzmann, “Real-time phase-front detector for heterodyne interferometers,” Appl. Opt. 46, 4541–4548 (2007). [CrossRef]
  7. C. M. Wu, S. T. Lin, and J. Fu, “Heterodyne interferometer with two spatially separated polarization beams for nanometrology,” Opt. Quantum Electron. 34, 1267–1276 (2002). [CrossRef]
  8. F. Zhao, “Picometer laser metrology for the Space Interferometry Mission,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 96 of Trends in Optics and Photonics Series (Optical Society of America, 2004).
  9. G. Heinzel, C. Braxmaier, R. Schilling, A. Ruediger, D. Robertson, M. te Plate, V. Wand, K. Arai, U. Johann, and K. Danzmann, “Interferometry for the LISA technology package (LTP) aboard SMART-2,” Class. Quantum Grav. 20, S153–S161 (2003). [CrossRef]
  10. D. Robertson, C. Killow, H. Ward, J. Hough, G. Heinzel, A. Garcia, V. Wand, U. Johann, and C. Braxmaier, “LTP interferometer—noise sources and performance,” Class. Quantum Grav. 22, S155–S163 (2005). [CrossRef]
  11. G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. F. Garcia Marin, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Ruediger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149–S154 (2005). [CrossRef]
  12. G. Hechenblaikner, R. Gerndt, U. Johann, P. Luetzow-Wentzky, V. Wand, H. Audley, K. Danzmann, A. Garcia-Marin, G. Heinzel, M. Nofrarias, and F. Steier, “Coupling characterization and noise studies of the Optical Metrology System on-board the LISA Pathfinder mission” (submitted to Appl. Opt.); preprint on arXiv:1006.2122.
  13. D. A. Shaddock, “Space-based gravitational wave detection with LISA,” Class. Quantum Grav. 25, 114012 (2008). [CrossRef]
  14. D. Weise, P. Marenaci, P. Weimer, M. Berger, H. R. Schulte, P. Gath, and U. Johann, “Opto-mechanical architecture of the LISA instrument,” in Proceedings of the 7th International Conference on Space Optics (ICSO); www.icsoconference2008.com (2008).
  15. H. Grote, G. Heinzel, A. Freise, S. Gossler, B. Wilke, H. Lueck, H. Ward, M. M. Casey, K. A. Strain, D. Robertson, J. Hough, and K. Danzmann, “Alignment control of GEO600,” Class. Quantum Grav. 21, S441–S449 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited