OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 1 — Jan. 1, 2011
  • pp: 19–23

Broadband terahertz circular polarizers with single- and double-helical array metamaterials

ShengXi Li, ZhenYu Yang, Jing Wang, and Ming Zhao  »View Author Affiliations

JOSA A, Vol. 28, Issue 1, pp. 19-23 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new broadband terahertz circular polarizer with a double-helix structure is proposed in this paper. Furthermore, we systematically simulated the performance of single- and double-helix circular polarizers. Our numerical simulation results show that the function regions of double-helical metamaterials are about 50% broader than those of the single-helical metamaterials in terahertz. We also analyzed the dependence of the performance of the single- and double-helix metamaterials on different structure parameters. Following the antenna theory and the metal wire grating theory, proper explanations were given to interpret the changes of performance with various structure parameters and the difference between the single and double helix.

© 2011 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: August 24, 2010
Revised Manuscript: November 3, 2010
Manuscript Accepted: November 3, 2010
Published: December 22, 2010

ShengXi Li, ZhenYu Yang, Jing Wang, and Ming Zhao, "Broadband terahertz circular polarizers with single- and double-helical array metamaterials," J. Opt. Soc. Am. A 28, 19-23 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem. 48, 357–386 (1997). [CrossRef] [PubMed]
  2. P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287–310 (1994). [CrossRef] [PubMed]
  3. P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example,” Biochemistry 35, 13094–13106 (1996). [CrossRef] [PubMed]
  4. T. B. Freedman, N. Ragunathan, and S. Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131–149 (1994). [CrossRef] [PubMed]
  5. J. McCann, A. Rauk, G. V. Shustov, H. Wieser, and D. Yang, “Electronic and vibrational circular dichroism of model β-lactams: 3-methyl- and 4-methylazetidin-2-one,” Appl. Spectrosc. 50, 630–641 (1996). [CrossRef]
  6. K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz time-domain spectroscopy of amino acids and polypeptides,” Biophys. J. , 89, L22–L24 (2005). [CrossRef] [PubMed]
  7. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002). [CrossRef] [PubMed]
  8. Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express 14, 4486–4493 (2006). [CrossRef] [PubMed]
  9. Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999). [CrossRef]
  10. R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys. 44, L676–L678 (2005). [CrossRef]
  11. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009). [CrossRef] [PubMed]
  12. J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, C. Lienau, J. H. Kang, and Q.-H. Park, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic bandgap sturctures,” Appl. Phys. Lett. 88, 071114 (2006). [CrossRef]
  13. J. W. Lee, M. A. Seo, J. Y. Sohn, D. J. Park, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Q.-H. Park, “Impedance matching plasmonic metamaterials to vacuum,” J. Korean Phys. Soc. 48, 103–107 (2006).
  14. P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994). [CrossRef]
  15. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  16. J. D. Kraus and R. J. Marhefka, Antennas: for All Applications, 3rd ed. (McGraw-Hill, 2003).
  17. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1997).
  18. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: anumerical parameter study,” Opt. Express 18, 1059–1069 (2010). [CrossRef] [PubMed]
  19. J. P. Auton, “Infrared transmission polarizers by photolithography,” Appl. Opt. 6, 1023–1028 (1967). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited