OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 1 — Jan. 1, 2011
  • pp: 46–53

When is polarimetric imaging preferable to intensity imaging for target detection?

François Goudail and J. Scott Tyo  »View Author Affiliations

JOSA A, Vol. 28, Issue 1, pp. 46-53 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (513 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider target detection in images perturbed with additive noise. We determine the conditions in which polarimetric imaging, which consists of analyzing of the polarization of the light scattered by the scene before forming the image, yields better performance than classical intensity imaging. These results give important information to assess the interest of polarimetric imaging in a given application.

© 2011 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: October 18, 2010
Manuscript Accepted: November 14, 2010
Published: December 23, 2010

François Goudail and J. Scott Tyo, "When is polarimetric imaging preferable to intensity imaging for target detection?," J. Opt. Soc. Am. A 28, 46-53 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vis. Comput. 15, 81–93 (1997). [CrossRef]
  2. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef] [PubMed]
  3. M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B(2006). [CrossRef]
  4. P. Terrier, V. Devlaminck, and J. M. Charbois, “Segmentation of rough surfaces using a polarization imaging system,” J. Opt. Soc. Am. A 25, 423–430 (2008). [CrossRef]
  5. P. J. Wu, J. Joseph, and T. Walsh, “Stokes polarimetry imaging of rat tail tissue in a turbid medium: degree of linear polarization image maps using incident linearly polarized light,” J Biomed. Opt. 11, 014031 (2006). [CrossRef] [PubMed]
  6. J. M. Bueno, J. Hunter, C. Cookson, M. Kisilak, and M. Campbell, “Improved scanning laser fundus imaging using polarimetry,” J. Opt. Soc. Am. A 24, 1337–1348 (2007). [CrossRef]
  7. O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging,” Appl. Opt. 45, 4062–4068(2006). [CrossRef] [PubMed]
  8. A. Ambirajan and D. C. Look, “Optimium angles for a polarimeter: part I,” Opt. Eng. 34, 1651–1658 (1995). [CrossRef]
  9. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804(2000). [CrossRef]
  10. J. S. Tyo, “Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters,” Opt. Lett. 25, 1198–1200 (2000). [CrossRef]
  11. J. S. Tyo, “Design of optimal polarimeters: maximization of the signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41, 619–630 (2002). [CrossRef] [PubMed]
  12. S. N. Savenkov, “Optimization and structuring of the instrument matrix for polarimetric measurements,” Opt. Eng. 41, 965–972 (2002). [CrossRef]
  13. A. A. Swartz, H. A. Yueh, J. A. Kong, L. M. Novak, and R. T. Shin, “Optimal polarizations for achieving maximal contrast in radar images,” J. Geophys. Res. 93, 15252–15260 (1988). [CrossRef]
  14. M. Floc’h, G. Le Brun, C. Kieleck, J. Cariou, and J. Lotrian, “Polarimetric considerations to optimize lidar detection of immersed targets,” Pure Appl. Opt. 7, 1327–1340 (1998). [CrossRef]
  15. F. Goudail, “Optimization of the contrast in active Stokes images,” Opt. Lett. 34, 121–123 (2009). [CrossRef] [PubMed]
  16. J. S. Tyo, S. J. Johnson, Z. Wang, and B. G. Hoover, “Designing partial Mueller matrix polarimeters,” Proc. SPIE 7461, 74610V (2009). [CrossRef]
  17. A. B. Kostinski and W. M. Boerner, “On the polarimetric contrast optimization,” IEEE Trans. Antennas Propag. 35, 988–991(1987). [CrossRef]
  18. F. Goudail and A. Bénière, “Optimization of the contrast in polarimetric scalar images,” Opt. Lett. 34, 1471–1473 (2009). [CrossRef] [PubMed]
  19. F. Goudail, “Comparison of the maximal achievable contrast in scalar, Stokes and Mueller images,” Opt. Lett. 35, 2600–2602(2010). [CrossRef] [PubMed]
  20. D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003). [CrossRef]
  21. P. Réfrégier and F. Goudail, “Invariant polarimetric contrast parameters for coherent light,” J. Opt. Soc. Am. A 19, 1223–1233 (2002). [CrossRef]
  22. F. Goudail, P. Réfrégier, and G. Delyon, “Bhattacharyya distance as a contrast parameter for statistical processing of noisy optical images,” J. Opt. Soc. Am. A 21, 1231–1240 (2004). [CrossRef]
  23. A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Design and experimental validation of a snapshot polarization contrast imager,” Appl. Opt. 48, 5764–5773 (2009). [CrossRef] [PubMed]
  24. M. H. Smith, J. B. Woodruff, and J. D. Howe, “Beam wander considerations in imaging polarimetry,” Proc. SPIE 3754, 50–54 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited