OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2057–2069

Multiresolution subspace-based optimization method for inverse scattering problems

Giacomo Oliveri, Yu Zhong, Xudong Chen, and Andrea Massa  »View Author Affiliations


JOSA A, Vol. 28, Issue 10, pp. 2057-2069 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002057


View Full Text Article

Enhanced HTML    Acrobat PDF (3175 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper investigates an approach to inverse scattering problems based on the integration of the subspace-based optimization method (SOM) within a multifocusing scheme in the framework of the contrast source formulation. The scattering equations are solved by a nested three-step procedure composed of (a) an outer multiresolution loop dealing with the identification of the regions of interest within the investigation domain through an iterative information-acquisition process, (b) a spectrum analysis step devoted to the reconstruction of the deterministic components of the contrast sources, and (c) an inner optimization loop aimed at retrieving the ambiguous components of the contrast sources through a conjugate gradient minimization of a suitable objective function. A set of representative reconstruction results is discussed to provide numerical evidence of the effectiveness of the proposed algorithmic approach as well as to assess the features and potentialities of the multifocusing integration in comparison with the state-of-the-art SOM implementation.

© 2011 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.3200) Scattering : Inverse scattering
(350.4010) Other areas of optics : Microwaves

ToC Category:
Image Processing

History
Original Manuscript: June 6, 2011
Manuscript Accepted: July 20, 2011
Published: September 13, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Giacomo Oliveri, Yu Zhong, Xudong Chen, and Andrea Massa, "Multiresolution subspace-based optimization method for inverse scattering problems," J. Opt. Soc. Am. A 28, 2057-2069 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-10-2057


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.-C. Chen, J. T. Johnson, M. Sato, and A. G. Yarovoy, “Foreword to the special issue on Subsurface Sensing Using Ground-Penetrating Radar (GPR),” IEEE Trans. Geosci. Remote Sens. 45, 2419–2421 (2007). [CrossRef]
  2. G. C. Giakos, M. Pastorino, F. Russo, S. Chowdhury, N. Shah, and W. Davros, “Noninvasive imaging for the new century,” IEEE Instrum. Meas. Mag. 2(2), 32–35 (1999). [CrossRef]
  3. R. Zoughi, Microwave Nondestructive Testing and Evaluation (Kluwer, 2000).
  4. D. Lesselier and J. Bowler, “Foreword to the special section on Electromagnetic and Ultrasonic Nondestructive Evaluation,” Inverse Probl. 18(6) (2002). [CrossRef]
  5. S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation—Overview and recent advances,” IEEE Instrum. Meas. Mag. 10, 26–38 (2007). [CrossRef]
  6. I. T. Rekanos, S. M. Panas, and T. D. Tsiboukis, “Microwave imaging using the finite-element method and a sensitivity analysis approach,” IEEE Trans. Med. Imaging 18, 1108–1114 (1999). [CrossRef]
  7. P. M. Meaney, M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, “A clinical prototype for active microwave imaging of the breast,” IEEE Trans. Microwave Theory Tech. 48, 1841–1853 (2000). [CrossRef]
  8. C. Yu, M. Yuan, J. Stang, E. Bresslour, R. T. George, G. A. Ybarra, W. T. Joines, and Q. Liu, “Active microwave imaging II: 3-D system prototype and image reconstruction from experimental data,” IEEE Trans. Microwave Theory Tech. 56, 991–1000(2008). [CrossRef]
  9. D. Lesselier and T. Habashy, “Foreword,” Inverse Probl. 16(5) (2000). [CrossRef]
  10. D. Lesselier and W. C. Chew, “Special section on Electromagnetic Characterization of Buried Obstacles,” Inverse Probl. 20(6) (2004). [CrossRef]
  11. M. Benedetti, M. Donelli, G. Franceschini, A. Massa, and M. Pastorino, “Evaluation study of the effectiveness of the integrated genetic-algorithm-based strategy for the tomographic subsurface detection of defects,” J. Opt. Soc. Am. A 23, 1311–1325 (2006). [CrossRef]
  12. T. Lasri and R. Zoughi, “"Editorial" from the issue on Advances and Applications in Microwave and Millimeter Wave Nondestructive Evaluation, Subsurf. Sens. Technol. Appl. 2, 343–345(2001). [CrossRef]
  13. P. Lobel, L. Blanc-Feraud, C. Pichot, and M. Barlaud, “A new regularization scheme for inverse scattering,” Inverse Probl. 13, 403–410 (1997). [CrossRef]
  14. A. Massa and S. Caorsi, eds.,Special issue on “Microwave Imaging and Inverse Scattering Techniques ,” J. Electromagn. Waves Appl. 17, 151–386 (2003).
  15. P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25, 123003 (2009). [CrossRef]
  16. M. Benedetti, D. Lesselier, M. Lambert, and A. Massa, “Multiple shapes reconstruction by means of multi-region level sets,” IEEE Trans. Geosci. Remote Sens. 48, 2330–2342 (2010). [CrossRef]
  17. M. Pastorino, Microwave Imaging (Wiley, 2010). [CrossRef]
  18. M. Pastorino, “Stochastic optimization methods applied to microwave imaging: a review,” IEEE Trans. Antennas Propag. Mag 55, 538–548 (2007). [CrossRef]
  19. H. Harada, D. J. N. Wall, T. Takenaka, and T. Tanaka, “Conjugate gradient method applied to inverse scattering problems,” IEEE Trans. Antennas Propag. Mag. 43, 784–792 (1995). [CrossRef]
  20. P. M. van den Berg and A. Abubakar, “Contrast source inversion method: sate of the art,” PIER 34, 189–218 (2001). [CrossRef]
  21. T. M. Habashy and A. Abubakar, “A general framework for constraint minimization for the inversion of electromagnetic measurements,” PIER 46, 265–312 (2004). [CrossRef]
  22. G. Bozza and M. Pastorino, “An inexact Newton-based approach to microwave imaging within the contrast source formulation,” IEEE Trans. Antennas Propag. Mag. 57, 1122–1132 (2009). [CrossRef]
  23. T. Takenaka, H. Zhou, and T. Tanaka, “Inverse scattering for a three-dimensional object in the time domain,” J. Opt. Soc. Am. A 20, 1867–1874 (2003). [CrossRef]
  24. N. Bleistein and J. K. Cohen, “Nonuniqueness of the inverse source problem in acoustic and electromagnetics,” J. Math. Phys. 18, 194–201 (1977). [CrossRef]
  25. T. M. Habashy, M. L. Oristaglio, and A. T. de Hoop, “Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity,” Radio Sci. 29, 1101–1118 (1994). [CrossRef]
  26. S. Caorsi and G. L. Gragnani, “Inverse-scattering method for dielectric objects based on the reconstruction of the nonmeasurable equivalent current density,” Radio Sci. 34, 1–8 (1999). [CrossRef]
  27. P. Rocca, M. Donelli, G. L. Gragnani, and A. Massa, “Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects,” Inverse Probl. 25(2009). [CrossRef]
  28. X. Chen, “Subspace-based optimization method for solving inverse-scattering problems,” IEEE Trans. Geosci. Remote Sens. 48, 42–49 (2010). [CrossRef]
  29. L. Pan, X. Chen, Y. Zhong, and S. Yeo, “Comparison among the variants of subspace-based optimization method for addressing inverse scattering problems: transverse electric case,” J. Opt. Soc. Am. A 27, 2208–2215 (2010). [CrossRef]
  30. K. Agarwal, L. Pan, and X. Chen, “Subspace-based optimization method for reconstruction of 2-D complex anisotropic dielectric objects,” IEEE Trans. Microwave Theory Tech. 58, 1065–1074(2010). [CrossRef]
  31. Y. Zhong, X. Chen, and K. Agarwal, “An improved subspace-based optimization method and its implementation in solving three-dimensional inverse problems,” IEEE Trans. Geosci. Remote Sens. 48, 3763–3768 (2010). [CrossRef]
  32. X. Chen, “Application of signal-subspace and optimization methods in reconstructing extended scatterers,” J. Opt. Soc. Am. A 26, 1022–1026 (2009). [CrossRef]
  33. L. Pan, K. Agarwal, Y. Zhong, S. Yeo, and X. Chen, “Subspace-based optimization method for reconstructing extended scatterers: transverse electric case,” J. Opt. Soc. Am. A 26, 1932–1937 (2009). [CrossRef]
  34. X. Chen, “Signal-subspace method approach to the intensity-only electromagnetic inverse scattering problem,” J. Opt. Soc. Am. A 25, 2018–2024 (2008). [CrossRef]
  35. T. Isernia, V. Pascazio, and R. Pierri, “On the local minima in a tomographic imaging technique,” IEEE Trans. Geosci. Remote Sens. 39, 1596–1607 (2001). [CrossRef]
  36. S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microwave Theory Tech. 51, 1162–1173(2003). [CrossRef]
  37. S. Caorsi, M. Donelli, and A. Massa, “Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method,” IEEE Trans. Microwave Theory Tech. 52, 1217–1228 (2004). [CrossRef]
  38. M. Donelli, G. Franceschini, A. Martini, and A. Massa, “An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems,” IEEE Trans. Geosci. Remote Sens. 44, 298–312 (2006). [CrossRef]
  39. M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three-dimensional microwave imaging problems solved through an efficient multi-scaling particle swarm optimization,” IEEE Trans. Geosci. Remote Sens. 47, 1467–1481 (2009). [CrossRef]
  40. O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: retrievable information and measurement strategies,” Radio Sci. 32, 2123–2137 (1997). [CrossRef]
  41. E. L. Miller and A. S. Willsky, “A multiscale, statistically based inversion scheme for linearized inverse scattering problems,” IEEE Trans. Geosci. Remote Sens. 34, 346–357 (1996). [CrossRef]
  42. J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross shape,” IEEE Trans. Antennas Propag. Mag. 13, 334–341(1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited