OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2091–2099

Compensation of shear waves in photoacoustic tomography with layered acoustic media

Robert W. Schoonover and Mark A. Anastasio  »View Author Affiliations


JOSA A, Vol. 28, Issue 10, pp. 2091-2099 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002091


View Full Text Article

Enhanced HTML    Acrobat PDF (527 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An image reconstruction formula is presented for photoacoustic computed tomography that accounts for conversion between longitudinal and shear waves in a planar-layered acoustic medium. We assume the optical absorber that produces the photoacoustic wave field is embedded in a single fluid layer and any elastic solid layers present are separated by one or more fluid layers. The measurement aperture is assumed to be planar. Computer simulation studies are conducted to demonstrate and investigate the proposed reconstruction formula.

© 2011 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

History
Original Manuscript: June 10, 2011
Manuscript Accepted: July 19, 2011
Published: September 19, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Robert W. Schoonover and Mark A. Anastasio, "Compensation of shear waves in photoacoustic tomography with layered acoustic media," J. Opt. Soc. Am. A 28, 2091-2099 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-10-2091


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys. 35, 5758–5767 (2008). [CrossRef]
  2. M. Xu and L. V. Wang, “Biomedical photoacoustics,” Rev. Sci. Instrum. 77, 041101 (2006). [CrossRef]
  3. A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
  4. L.Wang, ed., Photoacoustic Imaging and Spectroscopy (CRC, 2009). [CrossRef]
  5. W. Joines, R. Jirtle, M. Rafal, and D. Schaeffer, “Microwave power absorption differences between normal and malignant tissue,” Int. J. Radiat. Oncol. Biol. Phys. 6, 681–687 (1980). [CrossRef] [PubMed]
  6. W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  7. V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110, 2783–2794 (2010). [CrossRef] [PubMed]
  8. R. Kruger, D. Reinecke, and G. Kruger, “Thermoacoustic computed tomography—technical considerations,” Med. Phys. 26, 1832–1837 (1999). [CrossRef] [PubMed]
  9. M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, “Thermoacoustic computed tomography with large planar receivers,” Inverse Probl. 20, 1663–1673 (2004). [CrossRef]
  10. P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008). [CrossRef] [PubMed]
  11. B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875 (2006). [CrossRef] [PubMed]
  12. K. Wang, S. Ermilov, R. Su, H. Brecht, A. Oraevsky, and M. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30, 203–214 (2011). [CrossRef]
  13. M. A. Anastasio, J. Zhang, D. Modgil, and P. J. L. Riviere, “Application of inverse source concepts to photoacoustic tomography,” Inverse Probl. 23, S21–S35 (2007). [CrossRef]
  14. L. A. Kunyansky, “Explicit inversion formulae for the spherical mean radon transform,” Inverse Probl. 23, 373–383(2007). [CrossRef]
  15. D. Finch, M. Haltmeier, and Rakesh, “Inversion of spherical means and the wave equation in even dimensions,” SIAM J. Appl. Math. 68, 392–412 (2007). [CrossRef]
  16. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005). [CrossRef]
  17. D. Finch, S. Patch, and Rakesh, “Determining a function from its mean values over a family of spheres,” SIAM J. Math. Anal. 35, 1213–1240 (2004). [CrossRef]
  18. Y. Xu, D. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography: I. Planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002). [CrossRef] [PubMed]
  19. K. P. Köstli, M. Frenz, H. Bebie, and H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872(2001). [CrossRef] [PubMed]
  20. R. A. Kruger, P. Liu, R. Fang, and C. Appledorn, “Photoacoustic ultrasound (PAUS) reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995). [CrossRef] [PubMed]
  21. Y. Xu and L. V. Wang, “Effects of acoustic heterogeneity in breast thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1134–1146 (2003). [CrossRef] [PubMed]
  22. M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Keng, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005). [CrossRef] [PubMed]
  23. P. J. La Riviere, J. Zhang, and M. A. Anastasio, “Image reconstruction in optoacoustic tomography for dispersive acoustic media,” Opt. Lett. 31, 781–783 (2006). [CrossRef] [PubMed]
  24. B. Treeby, E. Zhang, and B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26, 115003 (2010). [CrossRef]
  25. L. Wang and X. Yang, “Boundary conditions in photoacoustic tomography and image reconstruction,” J. Biomed. Opt. 12, 014027 (2007). [CrossRef] [PubMed]
  26. R. W. Schoonover and M. A. Anastasio, “Image reconstruction in photoacoustic tomography involving layered acoustic media,” J. Opt. Soc. Am. A 28, 1114–1120 (2011). [CrossRef]
  27. D. Modgil, M. A. Anastasio, and P. J. L. Rivière, “Image reconstruction in photoacoustic tomography with variable speed of sound using a higher-order geometrical acoustics approximation,” J. Biomed. Opt. 15, 021308 (2010). [CrossRef] [PubMed]
  28. M. Agranovsky and P. Kuchment, “Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed,” Inverse Probl. 23, 2089–2102 (2007). [CrossRef]
  29. X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol. 51, 6437–6448 (2006). [CrossRef] [PubMed]
  30. R. Willemink, S. Manohar, Y. Purwar, C. Slump, F. van der Heijden, and T. van Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” Proc. SPIE 6920, 692013 (2008). [CrossRef]
  31. Y. Hristova, P. Kuchment, and L. Nguyen, “Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,” Inverse Probl. 24, 055006 (2008). [CrossRef]
  32. P. Stefanov and G. Uhlmann, “Thermoacoustic tomography with variable sound speed,” Inverse Probl. 25, 075011 (2009). [CrossRef]
  33. X. Yang and L. V. Wang, “Monkey brain cortex imaging by photoacoustic tomography,” J. Biomed. Opt. 13, 044009 (2008). [CrossRef] [PubMed]
  34. X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35, 3205–3214 (2008). [CrossRef] [PubMed]
  35. F. Fry and J. Barger, “Acoustical properties of the human skull,” J. Acoust. Soc. Am. 63, 1576–1590 (1978). [CrossRef] [PubMed]
  36. A. Yousefi, D. Goertz, and K. Hynynen, “Transcranial shear-mode ultrasound: assessment of imaging performance and excitation techniques,” IEEE Trans. Med. Imaging 28, 763–774(2009). [CrossRef] [PubMed]
  37. M. Hayner and K. Hynynen, “Numerical analysis of ultrasonic transmission and absorption of oblique plane waves through the human skull,” J. Acoust. Soc. Am. 110, 3319–3330 (2001). [CrossRef]
  38. S. Baikov, A. Molotilov, and V. Svet, “Physical and technological aspects of ultrasonic imaging of brain structures through thick skull bones: 1. theoretical and model studies,” Acoust. Phys. 49, 276–284 (2003). [CrossRef]
  39. M. Haltmeier, O. Scherzer, and G. Zangerl, “A reconstruction algorithm for photoacoustic imaging based on the nonuniform FFT,” IEEE Trans. Med. Imaging 28, 1727–1735 (2009). [CrossRef] [PubMed]
  40. P. M. Morse and K. U. Ingard, Theoretical Acoustics (Princeton Univ. Press, 1986).
  41. W. C. Chew, Waves and Fields in Inhomogeneous Media (Springer, 1995).
  42. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).
  43. K. Graff, Wave Motion in Elastic Solids (Dover, 1975).
  44. H. Schmidt and F. Jensen, “A full wave solution for propagation in multilayered viscoelastic media with application to Gaussian beam reflection at fluid–solid interfaces,” J. Acoust. Soc. Am. 77, 813–825 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited