OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2108–2114

Quantitative determination of dynamical properties using coherent spatial frequency domain imaging

Tyler B. Rice, Soren D. Konecky, Amaan Mazhar, David J. Cuccia, Anthony J. Durkin, Bernard Choi, and Bruce J. Tromberg  »View Author Affiliations


JOSA A, Vol. 28, Issue 10, pp. 2108-2114 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002108


View Full Text Article

Enhanced HTML    Acrobat PDF (756 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser speckle imaging (LSI) is a fast, noninvasive method to obtain relative particle dynamics in highly light scattering media, such as biological tissue. To make quantitative measurements, we combine LSI with spatial frequency domain imaging, a technique where samples are illuminated with sinusoidal intensity patterns of light that control the characteristic path lengths of photons in the sample. We use both diffusion and radiative transport to predict the speckle contrast of coherent light remitted from turbid media. We validate our technique by measuring known Brownian diffusion coefficients ( D b ) of scattering liquid phantoms. Monte Carlo (MC) simulations of radiative transport were found to provide the most accurate contrast predictions. For polystyrene microspheres of radius 800 nm in water, the expected and fit D b using radiative transport were 6.10 E 07 and 7.10 E 07 mm 2 / s , respectively. For polystyrene microspheres of radius 1026 nm in water, the expected and fit D b were 4.7 E 07 and 5.35 mm 2 / s , respectively. For scattering particles in water–glycerin solutions, the fit fractional changes in D b with changes in viscosity were all found to be within 3% of the expected value.

© 2011 Optical Society of America

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Imaging Systems

History
Original Manuscript: April 12, 2011
Revised Manuscript: July 25, 2011
Manuscript Accepted: August 17, 2011
Published: September 21, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Tyler B. Rice, Soren D. Konecky, Amaan Mazhar, David J. Cuccia, Anthony J. Durkin, Bernard Choi, and Bruce J. Tromberg, "Quantitative determination of dynamical properties using coherent spatial frequency domain imaging," J. Opt. Soc. Am. A 28, 2108-2114 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-10-2108


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).
  2. R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum, 1985).
  3. A. Wax and V. Backman, Biomedical Applications of Light Scattering, Biophotonics Series (McGraw-Hill, 2010).
  4. G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. BME-27, 597–604 (1980). [CrossRef]
  5. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988). [CrossRef] [PubMed]
  6. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004). [CrossRef] [PubMed]
  7. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981). [CrossRef]
  8. J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999). [CrossRef]
  9. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009). [CrossRef] [PubMed]
  10. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005). [CrossRef] [PubMed]
  11. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17, 14780–14790 (2009). [CrossRef] [PubMed]
  12. A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt. 15, 010506 (2010). [CrossRef] [PubMed]
  13. J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011). [CrossRef] [PubMed]
  14. F. R. Ayers, D. J. Cuccia, K. M. Kelly, and A. J. Durkin, “Wide-field spatial mapping of in vivo tattoo skin optical properties using modulated imaging,” Lasers Surg. Med. 41, 442–453(2009). [CrossRef] [PubMed]
  15. A. Lin, M. Koike, K. Green, J. Kim, A. Mazhar, T. Rice, F. LaFerla, and B. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011). [CrossRef] [PubMed]
  16. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).
  17. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110–093111 (2005). [CrossRef]
  18. P. A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16, 1651–1664 (1999). [CrossRef]
  19. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987). [CrossRef]
  20. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997). [CrossRef]
  21. D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E 51, 3350–3358 (1995). [CrossRef]
  22. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990). [CrossRef]
  23. J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105, 102028 (2009). [CrossRef]
  24. D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14, 024033 (2009). [CrossRef] [PubMed]
  25. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef] [PubMed]
  26. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, SPIE Conference Proceedings (SPIE, 1989), Vol. IS 5, pp. 102–111.
  27. A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B 43, 5934 (1991). [CrossRef]
  28. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558 (1994). [CrossRef] [PubMed]
  29. S. Prahl, http://omlc.ogi.edu/software/mc/, accessed 1 May 2010.
  30. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9–15(2008). [CrossRef]
  31. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109(2010). [CrossRef] [PubMed]
  32. A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 3rd ed., McGraw-Hill Series in Electrical Engineering, Communications and Signal Processing (McGraw-Hill, 1986).
  33. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992). [CrossRef] [PubMed]
  34. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907–5925 (2008). [CrossRef] [PubMed]
  35. N. E. Dorsey, Properties of Ordinary Water-Substance in All its Phases: Water Vapor, Water, and All the Ices (Reinhold, 1989), pp. 2331–2336.
  36. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006). [CrossRef] [PubMed]
  37. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465–3467 (2006). [CrossRef] [PubMed]
  38. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited