OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2139–2147

Comparison of polarimetric techniques for the identification of biological and chemical materials using Mueller matrices, lateral waves, and surface waves

Ezekiel Bahar  »View Author Affiliations


JOSA A, Vol. 28, Issue 10, pp. 2139-2147 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002139


View Full Text Article

Enhanced HTML    Acrobat PDF (590 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical polarimetric techniques to identify and characterize biological and chemical materials have received much attention recently for their broad applications in biophotonics, biochemistry, biomedicine, and pharmacology. We present here several options for the measurement of optical rotation, diattenuation, and the index of depolarization. These include polar decomposition, identification of specific pairs of Mueller matrix elements that are proportional to optical activity, and the cross-polarized components of lateral waves and surface waves at the interface between free space and the optically active material.

© 2011 Optical Society of America

OCIS Codes
(000.2690) General : General physics
(000.3860) General : Mathematical methods in physics
(040.1880) Detectors : Detection
(240.0240) Optics at surfaces : Optics at surfaces
(290.0290) Scattering : Scattering
(290.5820) Scattering : Scattering measurements

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: May 20, 2011
Revised Manuscript: July 19, 2011
Manuscript Accepted: August 17, 2011
Published: September 23, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Ezekiel Bahar, "Comparison of polarimetric techniques for the identification of biological and chemical materials using Mueller matrices, lateral waves, and surface waves," J. Opt. Soc. Am. A 28, 2139-2147 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-10-2139


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486–490 (1976). [CrossRef] [PubMed]
  2. E. Bahar, “Detection and identification of optical activity using polarimetry—applications in biophotonics biomedicine and biochemistry,” J. Biophotonics 1, 230–237 (2008). [CrossRef]
  3. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  4. S. L. Jacques and R. J. Ramella-Roman, “Propagation of polarized light beams through biological tissues,” Proc. SPIE 3914, 345–352 (2000). [CrossRef]
  5. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002). [CrossRef] [PubMed]
  6. L. Wang and S. Jacques, “Non-invasive detection of skin cancers by measuring optical properties of tissue,” Proc. SPIE 2395, 548–558 (1995). [CrossRef]
  7. R. C. N. Studinski and I. A. Vitkin, “Methodology for examining polarized light interactions with tissues and tissue-like media in the exact backscattering direction,” J. Biomed. Opt. 5, 330–337(2000). [CrossRef] [PubMed]
  8. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissue with polarized light,” Lasers Surg. Med. 26, 119–129 (2000). [CrossRef] [PubMed]
  9. M. H. Smith, A. Lompado, and P. Burke, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000). [CrossRef]
  10. M. H. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001). [CrossRef]
  11. G. L. Liu, Y. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to cancer diagnostics,” Proc. SPIE 4617, 208–220 (2002). [CrossRef]
  12. L. V. Wang, G. L. Coté, and S. L. Jacques, eds, “Special section on tissue polarimetry,” J. Biomed. Opt. 7, 278–397 (2002). [CrossRef]
  13. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340(2002). [CrossRef] [PubMed]
  14. N. G. Khlebtsov, I. L. Maksimova, V. V. Tuchin, and L. Wang, “Introduction to light scattering by biological objects,” in Handbook of Optical Biomedical Diagnostics, Vol. PM107 of SPIE Press Monographs (SPIE, 2002), pp. 31–167.
  15. V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).
  16. J. Chung, W. Jung, M. J. Hammer-Wilson, P. Wilder-Smith, and Z. Chen, “Use of polar decomposition for the diagnosis of oral pre-cancer,” Appl. Opt. 46, 3038–3045 (2007). [CrossRef] [PubMed]
  17. N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2, 145–156 (2009). [CrossRef] [PubMed]
  18. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadigan, I. Itzkan, R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001). [CrossRef] [PubMed]
  19. C. A. Browne and F. W. Zerban, Physical and Chemical Methods of Sugar Analysis (Wiley, 1941).
  20. E. Bahar, “Mueller matrices for waves reflected and transmitted through chiral materials, waveguide modal solutions and applications,” J. Opt. Soc. Am. B 24, 1610–1619 (2007). [CrossRef]
  21. M. Silverman, “Reflection and refraction at the surfaces of achiral medium: comparison of gyrotropic constitutive relations invariant or non-invariant under duality transformations,” J. Opt. Soc. Am. A 3, 830–837 (1986). [CrossRef]
  22. E. Bahar, “Reflection and transmission matrices at a free-space-chiral interface based on the invariant constitutive relations and for gyrotropic media and the Drude–Born–Feredov constitutive relations,” J. Opt. Soc. Am. A 26, 1834–1838(2009). [CrossRef]
  23. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995). [CrossRef]
  24. S. Lu and R. A. Chipman, “Mueller matrices and the degree of polarization,” Opt. Commun. 146, 11–14 (1998). [CrossRef]
  25. N. J. Higham, “Computing the polar decomposition-with applications,” SIAM J. Sci. Statist. Comput. 7, 1100–1174(1986).
  26. N. J. Higham, C. Mehl, and F. Tisseur, “The canonical generalized polar decomposition,” SIAM J. Matrix Anal. Appl. 31, 2163–2180 (2010). [CrossRef]
  27. A. Vitkin, N. Ghosh, and M. F. G. Wood, “Diagnostic photomedicine: probing biological tissues with polarized light,” SPIE Newsroom, DOI: 10.1117/2.1200808.1238 (2008), http://spie.org/x27101.xml?ArticleID=x27101. [CrossRef]
  28. S. Manhas, M. K. Swami, P. Buddhiwant, N. Gosh, P. K. Gupta and K. Sing, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscatter geometry,” Opt. Express 14, 190–202 (2006). [CrossRef] [PubMed]
  29. J. Morio and A. Goudail, “Influence of the order of diattenuator, retarder and polarizer in polar decomposition of Mueller matrices,” Opt. Lett. 29, 2234–2236 (2004). [CrossRef] [PubMed]
  30. S. R. Cloude, “Group theory and polarization algebra,” Optik 75, 26–36 (1986).
  31. A. H. Carrieri, “Neural network pattern recognition by means of differential absorption Mueller matrices spectroscopy,” Appl. Opt. 38, 3759–3766 (1999). [CrossRef]
  32. A. H. Carrieri, J. R. Bottinger, D. J. Owens, and E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550–6557 (1998). [CrossRef]
  33. E. Bahar, “The relationship between optical rotation and circular dichroism and elements of the Mueller matrix for natural and artificial materials,” J. Opt. Soc. Am. B 25, 218–222(2008). [CrossRef]
  34. E. Bahar, “Characterization of natural and artificial optical activity by the Mueller matrix for oblique incidence, total internal reflection and Brewster angle,” J. Opt. Soc. Am. B 25, 1294–1302(2008). [CrossRef]
  35. E. Bahar, “Roadmaps for the use of Mueller matrix measurements to detect and identify biological and chemical materials through their optical activity: potential applications in biomedicine, biochemistry, security, and industry,” J. Opt. Soc. Am. B 26, 364–370 (2009). [CrossRef]
  36. E. Bahar, “Total transmission of incident plane waves that satisfy the Brewster conditions at a free-space-chiral interface,” J. Opt. Soc. Am. A 27, 2055–2060 (2010). [CrossRef]
  37. M. Silverman, Waves and Grains (Princeton University Press, 1998).
  38. E. Bahar, “Optimum electromagnetic wave excitations of complex media characterized by positive or negative refractive indices and by chiral properties,” J. Opt. Soc. Am. B 24, 2807–2813 (2007). [CrossRef]
  39. M. Silverman and T. Black, “Experimental method to detect chiral asymmetry in specular light scattering from a naturally optically active medium,” Phys. Lett. A 126, 171–176 (1987). [CrossRef]
  40. M. Silverman, N. Ritchie, G. Cushman, and B. Fisher, “Experimental configurations using optical phase modulation to measure chiral asymmetries in light specularly reflected from a naturally gyrotropic medium,” J. Opt. Soc. Am. A 5, 1852–1862(1988). [CrossRef]
  41. E. Bahar, “Guided surface waves over a free-space-chiral interface: applications to identification of optically active materials,” J. Opt. Soc. Am. B 28, 868–872 (2011). [CrossRef]
  42. E. Bahar, “Cross polarization of lateral waves propagating along a free-space-chiral planar interface: application to identification of optically active materials,” J. Opt. Soc. Am. B 28, 1194–1199(2011). [CrossRef]
  43. E. Bahar and R. Kubik, “Description of a versatile optical polarimetric scatterometer that measures all 16 elements of Mueller matrix for reflection and transmission: application to measurements of scatter cross sections, ellipsometric parameters, optical activity, and the complex chiral parameters,” Opt. Eng. 47, 093603 (2008). [CrossRef]
  44. E. Bahar, “Like and cross-polarized scatter cross sections for two-dimensional, multiscale rough surfaces based on a unified full wave variational technique,” Radio Sci. 46, RS4002, doi:10.1029/2010RS004441 (2011). [CrossRef]
  45. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1987).
  46. E. J. Ariens, W. Soudijin, and P. B. M. W. M. Timmermans, Stereochemistry and Biological Activity of Drugs (Blackwell, 1983).
  47. J. W. Wamer, Drug Stereochemistry (Dekker, 1993).
  48. G. J. Thomas, Jr., “Raman spectroscopy of protein and nucleic acid assemblies,” Annu. Rev. Biophys. Biomol. Struct. 28, 1–27(1999). [CrossRef] [PubMed]
  49. E. W. Blanch, L. Hecht, L. A. Day, D. M. Pederson, and L. D. Barron, “Tryptophan absolute stereochemistry in viral coat proteins from Raman optical activity,” J. Am. Chem. Soc. 123, 4863–4864 (2001). [CrossRef] [PubMed]
  50. E. W. Blanch, D. J. Robinson, L. Hecht, and L. D. Barron, “Solution structures of potato virus X and narcissus mosaic virus from Raman optical activity,” J. Gen. Virol. 83, 241–246(2002).
  51. E. W. Blanch, L. Hecht, C. D. Syme, V. Volpetti, G. P. Lomonossoff, K. Nielsen, and L. D. Barron, “Molecular structures of viruses from Raman optical activity,” J. Gen. Virol. 83, 2593–2600 (2002). [PubMed]
  52. M. Buenemann and P. Lenz, “Elastic properties and mechanical stability of chiral and filled viral capsids,” Phys. Rev. E 78, 051924 (2008). [CrossRef]
  53. J. Arsuaga, M. Vazquez, P. McGuirk, S. Trigueros, D. Sumners, and J. Roca, “DNA knots reveal a chiral organization of DNA in phage capsids,” Proc. Natl. Acad. Sci. USA 102, 9165–9169(2005). [CrossRef] [PubMed]
  54. M. Quaglia, A. Mai, G. Sbardella, M. Artico, R. Ragno, S. Massa, D. del Piano, G. Setzu, S. Doratiotto, and V. Cotichini, “Chiral resolution and molecular modeling investigation of rac-2-cyclopentylthio-6-[1-(2,6-difluorophenyl)ethyl]-3,4-dihydro-5-methylpyrimidin-4(3H)-one (MC-1047), a potent anti-HIV-1 reverse transcriptase agent of the DABO class,” Chirality 13, 75–80 (2001). [CrossRef] [PubMed]
  55. M. A. Siddiqui, S. H. Hughes, P. L. Boyer, H. Mitsuya, Q. N. Van, C. George, S. G. Sarafinanos, and V. E. Marquez, “A 4′-C-ethynyl-2′,3′-dideoxynucleoside analogue highlights the role of the 3′-OH in anti-HIV active 4′-C-ethynyl-2′-deoxy nucleosides,” J. Med. Chem. 47, 5041–5048 (2004). [CrossRef] [PubMed]
  56. T. K. Venkatachalam, C. Mao, and F. M. Uckun, “Stereochemistry as a major determinant of the anti-HIV activity of chiral naphthyl thiourea compounds,” Antivir. Chem. Chemother. 12, 213–221 (2001).
  57. T. K. Venkatachalam, C. Mao, and F. M. Uckun, “Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds,” Bioorg. Med. Chem. 12, 4275–4284 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited