OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2209–2217

Performance enhancements to absorbance-modulation optical lithography. I. Plasmonic reflector layers

John E. Foulkes and Richard J. Blaikie  »View Author Affiliations

JOSA A, Vol. 28, Issue 11, pp. 2209-2217 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1083 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ability to improve the transmission and intensity profiles in absorbance-modulation optical lithography [ J. Opt. Soc. Am. A 23, 2290–2294 (2006) and Phys. Rev. Lett. 98, 043905 (2007)] through the introduction of a plasmonic metal layer is investigated. In this part of the work, a plasmonic reflector layer (PRL) is placed beneath the photoresist layer. Improvement is expected due to surface plasmons being induced on the plasmonic layer and supporting the transmission of the image deeper into the imaging layer. The introduction of the plasmonic reflector improves the depth of focus markedly, with the image confinement extended up to 60 nm but with a penalty of up to a 50% increase in the minimum full width at half-maximum of the intensity profile. The presented work demonstrates that a PRL can be a valuable tool for near-field lithography.

© 2011 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(240.6680) Optics at surfaces : Surface plasmons
(110.4235) Imaging systems : Nanolithography
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Imaging Systems

Original Manuscript: August 5, 2011
Manuscript Accepted: August 26, 2011
Published: October 5, 2011

John E. Foulkes and Richard J. Blaikie, "Performance enhancements to absorbance-modulation optical lithography. I. Plasmonic reflector layers," J. Opt. Soc. Am. A 28, 2209-2217 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE 96, 248–270(2008). [CrossRef]
  2. R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A 23, 2290–2294 (2006). [CrossRef]
  3. R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007). [CrossRef] [PubMed]
  4. T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009). [CrossRef] [PubMed]
  5. J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27, 2941–2946 (2009). [CrossRef]
  6. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161–163 (2003). [CrossRef]
  7. R. J. Blaikie and S. J. McNab, “Simulation study of ‘perfect lenses’ for near-field optical nanolithography,” Microelectron. Eng. 61, 97–103 (2002). [CrossRef]
  8. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562(1999). [CrossRef]
  9. R. J. Blaikie, M. M. Alkaisi, S. J. McNab, and D. O. S. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004). [CrossRef]
  10. M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15, 11542–11552 (2007). [CrossRef] [PubMed]
  11. COMSOL, Inc., 744 Cowper Street, Palo Alto, California 94301, www.comsol.com.
  12. J. E. Foulkes, “Absorbance modulation optical lithography: simulating the performance of a controllable absorbance mask in the near-field,” Ph.D. dissertation (University of Canterbury, Christchurch, New Zealand, 2011).
  13. C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley2007). [CrossRef]
  14. P. B. Johnson and R. W. Christy, “Optical-constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  15. J. E. Foulkes and R. J. Blaikie, “Performance enhancements to absorbance-modulation optical lithography. II. Plasmonic superlenses,” J. Opt. Soc. Am. A 28, 2218–2225 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited