OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2253–2260

Orbital angular momentum of Laguerre–Gaussian beams beyond the paraxial approximation

Alexander Cerjan and Charles Cerjan  »View Author Affiliations


JOSA A, Vol. 28, Issue 11, pp. 2253-2260 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002253


View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive a full field solution for Laguerre–Gaussian beams consistent with the Helmholtz equation using the angular spectrum method. Field components are presented as an order expansion in the ratio of the wave length to the beam waist, f = λ / ( 2 π w 0 ) , which is typically small. The result is then generalized to a beam of arbitrary polarization. This result is then used to reproduce the signature angular momentum properties of Laguerre–Gaussian beams in the paraxial limit. The subsequent higher-order term is similarly obtained, which does not display a clear separation of orbital and spin angular momentum components.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1960) Diffraction and gratings : Diffraction theory
(070.2590) Fourier optics and signal processing : ABCD transforms

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 7, 2011
Revised Manuscript: August 22, 2011
Manuscript Accepted: September 9, 2011
Published: October 11, 2011

Citation
Alexander Cerjan and Charles Cerjan, "Orbital angular momentum of Laguerre–Gaussian beams beyond the paraxial approximation," J. Opt. Soc. Am. A 28, 2253-2260 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-11-2253


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. W. Beijersbergen, R. J.C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  2. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936). [CrossRef]
  3. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601–053604 (2002). [CrossRef] [PubMed]
  4. S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B: Quantum Semiclass. Opt. 4, S7–S16 (2002). [CrossRef]
  5. M. V. Berry, “Optical currents,” J. Opt. A: Pure Appl. Opt. 11, 094001 (2009). [CrossRef]
  6. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momentum and spin–orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82, 063825 (2010). [CrossRef]
  7. C. F. Li, “Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization,” Phys. Rev. A 80, 063814 (2009). [CrossRef]
  8. C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 17, 32–100 (1950).
  9. P. C. Clemmow, The Plane Wave Spectrum Representations of Electromagnetic Fields (Pergamon, 1966).
  10. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  11. G. P. Agrawal and D. N. Pattanayak, “Gaussian beam propagation beyond the paraxial approximation,” J. Opt. Soc. Am. 69, 575–578 (1979). [CrossRef]
  12. L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732(1990). [CrossRef] [PubMed]
  13. B. Quesnel and P. Mora, “Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,” Phys. Rev. E 58, 3719–3732 (1998). [CrossRef]
  14. C. G. Chen, P. T. Konkola, J. Ferrera, R. K. Heilmann, and M. L. Schattenburg, “Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations,” J. Opt. Soc. Am. A 19, 404–412 (2002). [CrossRef]
  15. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
  16. S. Yan and B. Yao, “Description of a radially polarized Laguerre–Gaussian beam beyond the paraxial approximation,” Opt. Lett. 32, 3367–3369 (2007). [CrossRef] [PubMed]
  17. G. Zhou, “Analytically vectorial structure of an apertured Laguerre–Gaussian beam in the far-field,” Opt. Lett. 31, 2616–2618 (2006). [CrossRef] [PubMed]
  18. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic Press, 2007).
  19. F.W. J.Olver, D.W.Lozier, R.F.Boisvert, and C.W.Clark (eds.), in NIST Handbook of Mathematical Functions(Cambridge University, 2010), p. 260.
  20. A. Cerjan and C. Cerjan, “Analytic solution of flat-top Gaussian and Laguerre–Gaussian laser field components,” Opt. Lett. 35, 3465–3467 (2010). [CrossRef] [PubMed]
  21. S. M. Barnett and L. Allen, “Orbital angular momentum and nonparaxial light beams,” Opt. Commun. 110, 670–678 (1994). [CrossRef]
  22. C. F. Li, T. T. Wang, and S. Y. Yang, “Comment on ‘Orbital angular momentum and nonparaxial light beams’,” Opt. Commun. 283, 2787–2788 (2010). [CrossRef]
  23. E. D. Rainville, “Laguerre polynomials,” in Special Functions (Chelsea, 1960), p. 209.
  24. L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184, 67–71 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited