OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2269–2278

Fast convergence with spectral volume integral equation for crossed block-shaped gratings with improved material interface conditions

Martijn C. van Beurden  »View Author Affiliations


JOSA A, Vol. 28, Issue 11, pp. 2269-2278 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002269


View Full Text Article

Enhanced HTML    Acrobat PDF (325 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For block-shaped dielectric gratings with two-dimensional periodicity, a spectral-domain volume integral equation is derived in which explicit Fourier factorization rules are employed. The Fourier factorization rules are derived from a projection-operator framework and enhance the numerical accuracy of the method, while maintaining a low computational complexity of O ( N log N ) or better and a low memory demand of O ( N ) .

© 2011 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 27, 2011
Revised Manuscript: August 26, 2011
Manuscript Accepted: September 12, 2011
Published: October 12, 2011

Citation
Martijn C. van Beurden, "Fast convergence with spectral volume integral equation for crossed block-shaped gratings with improved material interface conditions," J. Opt. Soc. Am. A 28, 2269-2278 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-11-2269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.-F. Yang, W. D. Burnside, and R. C. Rudduck, “A doubly periodic moment method solution for the analysis and design of an absorber covered wall,” IEEE Trans. Antennas Propag. 41, 600–609 (1993). [CrossRef]
  2. H.-Y. D. Yang and J. Wang, “Surface waves of printed antennas on planar artificial periodic dielectric structures,” IEEE Trans. Antennas Propag. 49, 444–450 (2001). [CrossRef]
  3. M. C. van Beurden and B. P. de Hon, “Electromagnetic modelling of antennas mounted on a band-gap slab—discretisation issues and domain and boundary integral equations,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications ICEAA ’03 (Politecnico di Torino, 2003), pp. 637–640. [PubMed]
  4. B. P. de Hon, M. C. van Beurden, R. Gonzalo, B. Martinez, I. Ederra, C. del Rio, L. Azcona, B. E. J. Alderman-B, P. G. Huggard, P. J. I. de Maagt, and L. Marchand, “Domain integral equations for electromagnetic bandgap slab simulations,” in URSI EMTS International Symposium on Electromagnetic Theory (University of Pisa, 2004), pp. 1239–1241.
  5. Y.-C. Chang, G. Li, H. Chu, and J. Opsal, “Efficient finite-element, Green’s function approach for critical-dimension metrology of three-dimensional gratings on multilayer films,” J. Opt. Soc. Am. A 23, 638–645 (2006). [CrossRef]
  6. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392(1982). [CrossRef]
  7. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  8. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  9. T.K.Sarkar, ed., Application of Conjugate Gradient Method to Electromagnetics and Signal Analysis, Vol.  5 of Progress in Electromagnetics Research (Elsevier, 1991).
  10. P. Zwamborn and P. M. van den Berg, “The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems,” IEEE Trans. Microwave Theory Tech. 40, 1757–1766 (1992). [CrossRef]
  11. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems,” Radio Sci. 31, 1225–1251(1996). [CrossRef]
  12. W.C.Chew, J.Jin, and E.Michielssen, eds., Fast and Efficient Algorithms in Computational Electromagnetics (Artech House, 2001).
  13. H.-Y. D. Yang, R. Diaz, and N. G. Alexopoulos, “Reflection and transmission of waves from multilayer structures with planar-implanted periodic material blocks,” J. Opt. Soc. Am. B 14, 2513–2521 (1997). [CrossRef]
  14. Y. Shi and C. H. Chan, “Multilevel Green’s function interpolation method for analysis of 3-D frequency selective structures using volume/surface integral equation,” J. Opt. Soc. Am. A 27, 308–318 (2010). [CrossRef]
  15. G. Valerio, P. Baccarelli, S. Paulotto, F. Frezza, and A. Galli, “Regularization of mixed-potential layered-media Green’s functions for efficient interpolation procedures in planar periodic structures,” IEEE Trans. Antennas Propag. 57, 122–134 (2009). [CrossRef]
  16. T. Magath and A. E. Serebryannikov, “Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs,” J. Opt. Soc. Am. A 22, 2405–2418 (2005). [CrossRef]
  17. T. Magath, “Coupled integral equations for diffraction by profiled, anisotropic, periodic structures,” IEEE Trans. Antennas Propag. 54, 681–686 (2006). [CrossRef]
  18. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  19. P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592–1598(1997). [CrossRef]
  20. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, 2nd ed. (IEEE, 1994). [CrossRef]
  21. A. G. Tijhuis and A. Rubio Bretones, “Transient excitation of a layered dielectric medium by a pulsed electric dipole: a spectral representation,” in Ultra-Wideband Short-Pulse Electromagnetics (Kluwer Academic/Plenum, 2000), pp. 167–174.
  22. D. Y. K. Ko and J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A 5, 1863–1866 (1988). [CrossRef]
  23. I. Gohberg and I. Koltracht, “Numerical solution of integral equations, fast algorithms and Krein-Sobolev equation,” Numer. Math. 47, 237–288 (1985). [CrossRef]
  24. G. L. G. Sleijpen and D. R. Fokkema, “BiCGstab(ℓ) for linear equations involving unsymmetric matrices with complex spectrum,” Electron. Trans. Numer. Anal. 1, 11–32 (1993).
  25. G. L. G. Sleijpen, H. A. van der Vorst, and D. R. Fokkema, “BiCGstab(ℓ) and other hybrid Bi-CG methods,” Numer. Algorithms 7, 75–109 (1994). [CrossRef]
  26. T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited