OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2340–2345

Self-consistent optical constants of SiC thin films

Juan I. Larruquert, Antonio P. Pérez-Marín, Sergio García-Cortés, Luis Rodríguez-de Marcos, José A. Aznárez, and José A. Méndez  »View Author Affiliations


JOSA A, Vol. 28, Issue 11, pp. 2340-2345 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002340


View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical constants of ion-beam-sputtered SiC films have been measured by ellipsometry in the 190 to 950 nm range. The set of data has been extended both toward shorter and longer wavelengths with data in the literature, along with inter- and extrapolations, in order to obtain a self-consistent set of data by means of Kramers–Krönig analysis. All data correspond to films that were deposited by sputtering on nonheated substrates, and hence they are expected to be amorphous. A bandgap of 1.9 eV for the films was fitted from the obtained optical constants. A good global accuracy of the data was estimated through the use of various sum rules. The consistent dataset includes the visible to the extreme ultraviolet (EUV); this large spectrum of characterization will enable the design of multilayer coatings that combine a high reflectance in parts of the EUV with desired performance at a secondary range, such as the visible. To our knowledge, this paper provides the first compilation of the optical constants of amorphous SiC films.

© 2011 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.6000) Materials : Semiconductor materials
(230.4170) Optical devices : Multilayers
(260.7200) Physical optics : Ultraviolet, extreme
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 17, 2011
Revised Manuscript: September 22, 2011
Manuscript Accepted: September 27, 2011
Published: October 26, 2011

Citation
Juan I. Larruquert, Antonio P. Pérez-Marín, Sergio García-Cortés, Luis Rodríguez-de Marcos, José A. Aznárez, and José A. Méndez, "Self-consistent optical constants of SiC thin films," J. Opt. Soc. Am. A 28, 2340-2345 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-11-2340


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. J. Choyke, W. D. Partlow, E. P. Supertzi, F. J. Venskytis, and G. B. Brandt, “Silicon-carbide diffraction grating for the vacuum ultraviolet: feasibility,” Appl. Opt. 16, 2013–2014 (1977). [CrossRef] [PubMed]
  2. M. M. Kelly, J. B. West, and D. E. Lloyd, “Reflectance of silicon carbide in the vacuum ultraviolet,” J. Phys. D 14, 401–404(1981). [CrossRef]
  3. R. A. M. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, and A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt. 27, 2815–2816 (1988). [CrossRef] [PubMed]
  4. J. B. Kortright and D. L. Windt, “Amorphous silicon carbide coatings for EUV optics,” Appl. Opt. 27, 2841–2846 (1988). [CrossRef] [PubMed]
  5. J. I. Larruquert and R. A. M. Keski-Kuha, “Multilayer coatings with high reflectance in the EUV spectral region from 50 to 121.6 nm,” Appl. Opt. 38, 1231–1236 (1999). [CrossRef]
  6. J. I. Larruquert and R. A. M. Keski-Kuha, “Sub-quarterwave multilayer coatings with high reflectance in the extreme ultraviolet,” Appl. Opt. 41, 5398–5404 (2002). [CrossRef] [PubMed]
  7. T. Ejima, A. Yamazaki, T. Banse, K. Saito, Y. Kondo, S. Ichimaru, and H. Takenaka, “Aging and thermal stability of Mg/SiC and Mg/Y2O3 reflection multilayers in the 25–35 nm region,” Appl. Opt. 44, 5446–5453 (2005). [CrossRef] [PubMed]
  8. R. Soufli, D. L. Windt, J. C. Robinson, E. A. Spiller, F. J. Dollar, A. L. Aquila, E. M. Gullikson, B. Kjornrattanawanich, J. F. Seely, and L. Golub, “Development and testing of EUV multilayer coatings for the Atmospheric Imaging Assembly instrument aboard the Solar Dynamics Observatory,” Proc. SPIE 5901, 59010M(2005). [CrossRef]
  9. B. Kjornrattanawanich, D. L. Windt, J. F. Seely, and Yu. A. Uspenskii, “SiC/Tb and Si/Tb multilayer coatings for extreme ultraviolet solar imaging,” Appl. Opt. 45, 1765–1772 (2006). [CrossRef] [PubMed]
  10. U. Schühle, H. Uhlig, W. Curdt, T. Feigl, A. Theissen, and L. Teriaca, “Thin silicon carbide coating of the primary mirror of VUV imaging instruments of solar orbiter,” in The Second Solar Orbiter Workshop, E.Marsch, K.Tsinganos, R.Marsden, and L.Conroy, eds., ESA SP-641 (ESA Publications Division, 2007), paper P83.
  11. W. J. Choyke and E. D. Palik, “Silicon carbide (SiC),” in Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985), pp. 587–596.
  12. J. I. Larruquert and R. A. M. Keski-Kuha, “Reflectance measurements and optical constants in the extreme ultraviolet for thin films of ion-beam-deposited SiC, Mo, Mg2Si, and InSb and of evaporated Cr,” Appl. Opt. 39, 2772–2781 (2000). [CrossRef]
  13. S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films (Oxford Univ. Press, 1948).
  14. E. A. Fagen, “Optical and electrical properties of amorphous silicon carbide films,” in Amorphous and Liquid Semiconductors, J.Stuke and W.Brenig, eds. (Taylor & Francis, 1974), Vol.  1. It contains part of the proceedings of the International Conference on Amorphous and Liquid Semiconductors held at Garmisch-Partenkirchen, Germany, in 1973.
  15. H. Matsunami, H. Masahiro, and T. Tanaka, “Structures and physical properties of sputtered amorphous SiC films,” J. Electron. Mater. 8, 249–260 (1979). [CrossRef]
  16. R. Dutta, P. K. Banerjee, and S. S. Mitra, “Amorphous silicon-carbon-fluorine alloy films,” Phys. Rev. B 27, 5032–5038 (1983). [CrossRef]
  17. S. Heckens and J. A. Woollam, “In-situ ellipsometry on sputtered dielectric and magneto-optic thin films,” Thin Solid Films 270, 65–68 (1995). [CrossRef]
  18. K. B. Sundaram, Z. Alizadeh, and L. Chow, “The effects of oxidation on the optical properties of amorphous SiC films,” Mater. Sci. Eng. B 90, 47–49 (2002). [CrossRef]
  19. J. A. Guerra, L. Montañez, O. Erlenbach, G. Galvez, F. De Zela, A. Winnacker, and R. Weingärtner, “Determination of the optical bandgap and disorder energies of thin amorphous SiC and AIN films produced by radio frequency magnetron sputtering,” J. Phys. 274, 012113 (2011). [CrossRef]
  20. P. Musumeci, R. Reitano, L. Calcagno, F. Roccaforte, A. Makhtari, and M. G. Grimaldi, “Relaxation and crystallization of amorphous silicon carbide probed by optical measurements,” Philos. Mag. B 76, 323–333 (1997). [CrossRef]
  21. M. Fernández-Perea, J. A. Méndez, José A. Aznárez, and Juan I. Larruquert, “In situ reflectance and optical constants of ion-beam-sputtered SiC films in the 58.4 to 149.2 nm region,” Appl. Opt. 48, 4698–4672 (2009). [CrossRef] [PubMed]
  22. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection, E=100–2000 eV, Z=1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982). [CrossRef]
  23. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). [CrossRef]
  24. R. Soufli, S. L. Baker, J. C. Robinson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009). [CrossRef]
  25. http://henke.lbl.gov/optical_constants/.
  26. G. E. Jellison, Jr., and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996). [CrossRef]
  27. D. T. Pierce and W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972). [CrossRef]
  28. The data are available on request at the following e-mail address: larruquert@io.cfmac.csic.es.
  29. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966). [CrossRef]
  30. J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mat. Res. Bull. 3, 37–46 (1968). [CrossRef]
  31. M. L. Theye, “Optical properties of a-Ge, a-Si and a-III-V compounds,” in Amorphous and Liquid Semiconductors, Volume  1, J.Stuke and W.Brenig, eds. (Taylor & Francis, 1974). It contains part of the proceedings of the International Conference on Amorphous and Liquid Semiconductors held at Garmisch-Partenkirchen, Germany, in 1973.
  32. O. Stenzel, The Physics of Thin Film Optical Spectra: An Introduction (Springer-Verlag, 2005), p. 214.
  33. E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: applications to aluminium,” Phys. Rev. B 22, 1612–1628 (1980). [CrossRef]
  34. Downloaded from the following web of Physical Reference Data, Physics Laboratory at NIST: http://physics.nist.gov/PhysRefData/FFast/html/form.html.
  35. M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and sum rules for the optical constants,” Phys. Rev. B 6, 4502–4509 (1972). [CrossRef]
  36. M. Altarelli and D. Y. Smith, “Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9, 1290–1298(1974). [CrossRef]
  37. M. Fernández-Perea, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, M. Vidal, E. Gullikson, A. Aquila, R. Soufli, and J. L. G. Fierro, “Optical constants of electron-beam evaporated boron films in the 6.8–900 eV photon energy range,” J. Opt. Soc. Am. A 24, 3800–3807 (2007). [CrossRef]
  38. M. Fernández-Perea, M. Vidal-Dasilva, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, E. Gullikson, A. Aquila, and R. Soufli, “Optical constants of evaporation-deposited silicon monoxide films in the 7.1–800 eV photon energy range,” J. Appl. Phys. 105, 113505 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited