OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: 2473–2493

Optomechanical imaging system for breast cancer detection

Rabah Al abdi, Harry L. Graber, Yong Xu, and Randall L. Barbour  »View Author Affiliations


JOSA A, Vol. 28, Issue 12, pp. 2473-2493 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002473


View Full Text Article

Enhanced HTML    Acrobat PDF (2212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Imaging studies of the breast comprise three principal sensing domains: structural, mechanical, and functional. Combinations of these domains can yield either additive or wholly new information, depending on whether one domain interacts with the other. In this report, we describe a new approach to breast imaging based on the interaction between controlled applied mechanical force and tissue hemodynamics. Presented is a description of the system design, performance characteristics, and representative clinical findings for a second-generation dynamic near-infrared optical tomographic breast imager that examines both breasts simultaneously, under conditions of rest and controlled mechanical provocation. The expected capabilities and limitations of the developed system are described in relation to the various sensing domains for breast imaging.

© 2011 Optical Society of America

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3830) Medical optics and biotechnology : Mammography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 8, 2011
Revised Manuscript: September 2, 2011
Manuscript Accepted: September 6, 2011
Published: November 11, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Rabah Al abdi, Harry L. Graber, Yong Xu, and Randall L. Barbour, "Optomechanical imaging system for breast cancer detection," J. Opt. Soc. Am. A 28, 2473-2493 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-12-2473


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Jemal, R. Siegel, J. Q. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin. 60, 277–300 (2010). [CrossRef] [PubMed]
  2. R. E. Hendrick, “Contrast agents in breast magnetic resonance imaging,” in Breast MRI, Fundamentals and Technical Aspects (Springer, 2008), Chap. 8, pp. 113–134.
  3. P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989). [PubMed]
  4. P. Vaupel, “Blood perfusion and microenvironment of human tumors, implications for clinical radiooncology,” in Tumor Blood Flow, M.Molls and P.Vaupel, eds. (Springer, 2000) pp. 41–45.
  5. A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001). [CrossRef] [PubMed]
  6. A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” Am. J. Roentgenol. 178, 1411–1417 (2002).
  7. I. Blickstein, R. Goldchmit, S. D. Strano, R. D. Goldman, and N. Barzili, “Echogenicity of fibroadenoma and carcinoma of the breast. Quantitative comparison using gain-assisted densitometric evaluation of sonograms,” J. Ultrasound Med. 14, 661–664 (1995). [PubMed]
  8. I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imag. 15, 73–88 (1993). [CrossRef]
  9. A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010). [CrossRef] [PubMed]
  10. O. Warburg, F. Wind, and E. Negelein, “The metabolism of tumors in the body,” J. Gen Physiol. 8, 519–530 (1927). [CrossRef] [PubMed]
  11. E. L. Rosen, W. B. Eubank, and D. A. Mankoff, “FDG PET, PET/CT, and breast cancer imaging,” Radiographics 27, S215–S229 (2007). [CrossRef]
  12. S. S. Gambhir, “Molecular imaging of cancer with positron emission tomography,” Nat. Rev. Cancer 2, 683–693 (2002). [CrossRef] [PubMed]
  13. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002). [CrossRef] [PubMed]
  14. R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” Proc. SPIE IS11, 87–120 (1993).
  15. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006). [CrossRef] [PubMed]
  16. R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, S. Zhong, S.-L. S. Barbour, S. Blattman, and T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” in Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A.H.Gandjbakhche, ed. (Optical Society of America, 1999) pp. 161–166.
  17. R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001). [CrossRef]
  18. G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE 4250, 130–141 (2001). [CrossRef]
  19. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001). [CrossRef] [PubMed]
  20. C. H. Schmitz, H. L. Graber, and R. L. Barbour, “Peripheral vascular noninvasive measurements,” in Encyclopedia of Medical Devices and Instrumentation, 2nd ed., J.G.Webster, ed. (Wiley-Interscience, 2006), pp. 234–252.
  21. C. H. Schmitz, D. P. Klemer, R. E. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140–2153 (2005). [CrossRef] [PubMed]
  22. Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009). [CrossRef] [PubMed]
  23. Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010). [CrossRef] [PubMed]
  24. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006). [CrossRef] [PubMed]
  25. S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212–1214(2003). [CrossRef] [PubMed]
  26. S. Jiang, B. W. Pogue, A. M. Laughney, C. A. Kogel, and K. D. Paulsen, “Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging,” Appl. Opt. 48, D130–D136 (2009). [CrossRef] [PubMed]
  27. S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. A. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006). [CrossRef]
  28. S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express 16, 16064–16078(2008). [CrossRef] [PubMed]
  29. R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res. 9, R88 (2007). [CrossRef] [PubMed]
  30. B. Wang, S. P. Povoski, X. Cao, D. Sun, and R. X. Xu, “Dynamic schema for near infrared detection of pressure-induced changes in solid tumors,” Appl. Opt. 47, 3053–3063 (2008). [CrossRef] [PubMed]
  31. R. M. Christensen, “Viscoelastic stress strain constitutive relations,” in Theory of Viscoelaticity, 2nd ed. (Academic, 1982), Chap. 1, pp. 16–20.
  32. R. Lakes, “Constitutive relations,” in Viscoelastic Materials (Cambridge University, 2009), Chap. 2, pp. 22–26.
  33. P. Regnault, “Breast ptosis: definition and treatment,” Clin. Plast. Surg. 3, 193–203 (1976). [PubMed]
  34. R. L. Barbour, R. Ansari, R. Al abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, and Y. Xu, “Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms,” Proc. SPIE 6870, 687002 (2008). [CrossRef]
  35. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853(1997). [CrossRef] [PubMed]
  36. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001). [CrossRef] [PubMed]
  37. F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformation of the breast under external perturbation,” Med. Image Anal. 6, 1–27 (2002). [CrossRef] [PubMed]
  38. Y. Pei, H. L. Graber, and R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt. 40, 5755–5769 (2001). [CrossRef]
  39. H. L. Graber, Y. Pei, and R. L. Barbour, “Imaging of spatiotemporal coincident states by DC optical tomography,” IEEE Trans. Med. Imaging 21, 852–866 (2002). [CrossRef] [PubMed]
  40. R. L. Barbour, H. L. Graber, R. Aronson, and J. Lubowsky, “Model for 3-D optical imaging of tissue,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (IEEE, 1990), Vol.  2, pp. 1395–1399. [CrossRef]
  41. R. L. Barbour, H. L. Graber, J. Lubowsky, and R. Aronson, “Monte Carlo (MC) modeling of photon transport in tissue (PTT) V: model for 3-D optical imaging of tissue,” Biophys. J. 57, p. 382a (1990).
  42. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004). [CrossRef] [PubMed]
  43. Y. Pei, H. L. Graber, and R. L. Barbour, “A fast reconstruction algorithm for implementation of time-series DC optical tomography,” Proc. SPIE 4955, 236–245 (2003). [CrossRef]
  44. J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004). [CrossRef] [PubMed]
  45. D. G. Russell and J. T. Ziewacz, “Pressures in a simulated breast subjected to compression forces comparable to those of mammography,” Radiology 194, 383–387 (1995). [PubMed]
  46. A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52, 1565–1576 (2007). [CrossRef] [PubMed]
  47. J. Sciarretta, “MR validation of soft tissue deformation as modeled by non-linear finite element analysis,” MS thesis (University of Toronto, 2000).
  48. S. Kumar and V. M. Weaver, “Mechanics, malignancy, and metastasis: the force journey of a tumor cell,” Cancer Metastasis Rev. 28, 113–127 (2009). [CrossRef] [PubMed]
  49. P. Schedin and P. J. Keely, “Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression,” Cold Spring Harb. Perspect. Biol. 3, a003228 (2011). [CrossRef]
  50. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009). [CrossRef] [PubMed]
  51. S. Thomsen and D. Tatman, “Physiological and pathological factors of human breast disease that can influence optical diagnosis,” Ann. N.Y. Acad. Sci. 838, 171–193 (1998). [CrossRef] [PubMed]
  52. A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121–4136 (2007). [CrossRef] [PubMed]
  53. S. McDonald, D. Saslow, and M. H. Alciati, “Performance and reporting of clinical breast examination: a review of the literature,” CA Cancer J. Clin. 54, 345–361 (2004). [CrossRef] [PubMed]
  54. J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005). [CrossRef] [PubMed]
  55. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006). [CrossRef] [PubMed]
  56. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003). [CrossRef] [PubMed]
  57. J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213, 203–233 (1999). [CrossRef] [PubMed]
  58. R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink, “MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography,” Magn. Reson. Med. 58, 1135–1144 (2007). [CrossRef] [PubMed]
  59. B. Davies, D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill, “Activity of type IV collagenases in benign and malignant breast disease,” Br. J. Cancer 67, 1126–1131 (1993). [CrossRef] [PubMed]
  60. M. Egeblad, M. G. Rasch, and V. M. Weaver, “Dynamic interplay between the collagen scaffold and tumor evolution,” Curr. Opin. Cell Biol. 22, 697–706 (2010). [CrossRef] [PubMed]
  61. P. S. Wellman, E. P. Dalton, D. Krag, K. A. Kern, and R. D. Howe, “Tactile imaging of breast masses,” Arch. Surg. 136, 204–208(2001). [CrossRef] [PubMed]
  62. V. Egorov and A. P. Sarvazyan, “Mechanical imaging of the breast,” IEEE Trans. Med. Imag. 27, 1275–1287 (2008). [CrossRef]
  63. H. Ponnekanti, J. Ophire, and I. Cespedes, “Axial stress distribution between coaxial compressors in elastography: an analytical model,” Ultrasound Med. Biol. 18, 667–673 (1992). [CrossRef] [PubMed]
  64. C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000). [CrossRef]
  65. Y. Pei, F.-B. Lin, and R. L. Barbour, “Modeling of sensitivity and resolution to an included object in a homogeneous scattering media and in MRI-derived breast map,” Opt. Express 5, 203–219 (1999). [CrossRef] [PubMed]
  66. H. L. Graber, Y. Xu, and R. L. Barbour, “Image correction scheme applied to functional diffuse optical tomography scattering images,” Appl. Opt. 46, 1705–1716 (2007). [CrossRef] [PubMed]
  67. H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004). [CrossRef] [PubMed]
  68. H. L. Graber, Y. Pei, R. L. Barbour, D. K. Johnston, Y. Zheng, and J. E. Mayhew, “Signal source separation and localization in the analysis of dynamic near-infrared optical tomographic time series,” Proc. SPIE 4955, 31–51 (2003). [CrossRef]
  69. J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” NeuroImage 10, 304–326 (1999). [CrossRef] [PubMed]
  70. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005). [CrossRef] [PubMed]
  71. A. Athanasiou, D. Vanel, C. Balleyguier, L. Fournier, M. C. Mathieu, S. Delaloge, and C. Dromain, “Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results,” Eur. J. Radiol. 54, 72–79 (2005). [CrossRef] [PubMed]
  72. J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37, 3715–3724 (2010). [CrossRef] [PubMed]
  73. S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254, 277–284 (2010). [CrossRef]
  74. D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited