OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: 2554–2560

Zernike–Galerkin method: efficient computational tool for elastically deformable optics

Dirk Strohmeier, Andreas Greiner, and Jan G. Korvink  »View Author Affiliations

JOSA A, Vol. 28, Issue 12, pp. 2554-2560 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1052 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the Zernike–Galerkin method, a tool for the discretization of partial differential equations (PDEs) on thin membranes in polar coordinates. The use of a truncated Zernike series as ansatz yields a semianalytical compact and parametric solution of the PDE. We demonstrate its use for the solution of the Poisson equation in polar coordinates, which is the equation of governing a thin strained membrane’s deformation, or the flow of heat, both of which are important influences for the deformable membrane design. The obtained solution is directly expressed in terms of the components of the wavefront error, which highly facilitates the formulation of design questions. The method is computational highly efficient due to the sparsity and recursivity of the ansatz, is applicable to other PDEs, and can be efficiently combined with geometric optical and optimization methods. Its application to model a pressure-driven adaptive lens membrane is demonstrated.

© 2011 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(080.1753) Geometric optics : Computation methods
(220.1080) Optical design and fabrication : Active or adaptive optics

Original Manuscript: July 14, 2011
Revised Manuscript: September 23, 2011
Manuscript Accepted: September 23, 2011
Published: November 16, 2011

Dirk Strohmeier, Andreas Greiner, and Jan G. Korvink, "Zernike–Galerkin method: efficient computational tool for elastically deformable optics," J. Opt. Soc. Am. A 28, 2554-2560 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1989). [PubMed]
  2. M. Peschka, F. Blechinger, H. Gross, and H. Zügge, Handbook of Optical Systems (Wiley-VCH, 2007), Vol.  3.
  3. F. Zernike, “Beugungstheorie des Schneidenver-fahrens und seiner verbesserten Form, der Phasenkontrastmethode,” Physica 1, 689–704 (1934). [CrossRef]
  4. W. Rueckert, “Methode zur Minimierung von Formabweichung einer elastischen Optik variabler Brennweite,” Kautschuk Gummi Kunststoffe 12, 540–547 (2010).
  5. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sens. Actuators A 154, 316–321 (2009). [CrossRef]
  6. F. Schneider, “Adaptive Silikon-Membransinsen mit integriertem Piezo-Aktor,” Ph.D thesis (IMTEK, University of Freiburg, 2009).
  7. B. Berge, “Lens with variable focus,” U.S. reissued patent: US RE39,874 E (9 October 2007).
  8. J. Peseux and B. Berge, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000). [CrossRef]
  9. Umesh A. Korde, “Large-displacement electrostatic actuation of membrane reflectors through mechanical control of electrode-membrane gap,” J. Intell. Mater. Syst. Struct. 21, 61–82 (2010). [CrossRef]
  10. Comsol Multiphysics, http://www.comsol.de (2010).
  11. Optima Research, ZEMAX, http://www.optima-research.com(2010).
  12. L. A. Carcalho, “Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye,” Invest. Ophthalmol. Vis. Sci. 46, 1915–1926 (2005). [CrossRef]
  13. J. P. Boyd, and F. Yu, “Comparing seven spectral methods for interpolation and for solving the Poisson equation in a disk: Zernike polynomials, Logan–Shepp ridge polynomials, Chebyshev–Fourier series, cylindrical Robert functions, Bessel–Fourier expansions, square-to-disk conformal mapping and radial basis functions,” J. Comput. Phys. 230, 1408–1436 (2011). [CrossRef]
  14. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  15. E. W. Weisstein, “Zernike polynomial, MathWorld—A Wolfram Web Resource,” http://mathworld.wolfram.com/ZernikePolynomial.html (2010).
  16. H.-G. Roos and C. Grossmann, Numerische Behandlung partieller Differentialgelichungen (Teubner, 1992).
  17. L. D. Landau and E. M. Lifschitz, Theoretical Physics, Theory of Elasticity, Vol.  7, 3rd ed. (Butterworth-Heinemann, 2002).
  18. C. A. J. Fletcher, Computational Galerkin Methods (Springer-Verlag, 1984).
  19. W. Gui and I. Babuška, “The h, p and h-p versions of the finite element method in 1 dimension,” Numer. Math. 49, 577–612(1986). [CrossRef]
  20. S. Timoshenko, The Theory of Plates and Shells (McGraw-Hill Higher Education, 1964).
  21. D. Strohmeier, J. Draheim, M. Domaszewski, A. Greiner, U. Wallrabe, and J. G. Korvink, “Particle swarm optimization on a new parametric model of a deformable membrane lens,” in IEEE 2011 International Conference on Optical MEMS and Nanophotonics (IEEE, 2011), pp. 201–202.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited