OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: 2568–2576

Impact of finite receiver-aperture size in a non-line-of-sight single-scatter propagation model

Mohamed A. Elshimy and Steve Hranilovic  »View Author Affiliations

JOSA A, Vol. 28, Issue 12, pp. 2568-2576 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a single-scatter propagation model is developed that expands the classical model by considering a finite receiver-aperture size for non-line-of-sight communication. The expanded model overcomes some of the difficulties with the classical model, most notably, inaccuracies in scenarios with short range and low elevation angle where significant scattering takes place near the receiver. The developed model does not approximate the receiver aperture as a point, but uses its dimensions for both field-of-view and solid-angle computations. To verify the model, a Monte Carlo simulation of photon transport in a turbid medium is applied. Simulation results for temporal responses and path losses are presented at a wavelength of 260 nm that lies in the solar-blind ultraviolet region.

© 2011 Optical Society of America

OCIS Codes
(290.1310) Scattering : Atmospheric scattering
(350.5500) Other areas of optics : Propagation
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:

Original Manuscript: July 12, 2011
Revised Manuscript: October 5, 2011
Manuscript Accepted: October 18, 2011
Published: November 17, 2011

Mohamed A. Elshimy and Steve Hranilovic, "Impact of finite receiver-aperture size in a non-line-of-sight single-scatter propagation model," J. Opt. Soc. Am. A 28, 2568-2576 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Huffman, Atmospheric Ultraviolet Remote Sensing(Academic, 1992).
  2. G. A. Shaw, A. M. Siegel, and M. L. Nischan, “Demonstration system and applications for compact wireless ultraviolet communications,” Proc. SPIE 5071, 241–252 (2003). [CrossRef]
  3. Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46(5), 67–73 (2008). [CrossRef]
  4. G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 6231, 62310C (2006). [CrossRef]
  5. G. Chen, F. Abou-Galala, Z. Xu, and B. M. Sadler, “Experimental evaluation of LED-based solar blind NLOS communication links,” Opt. Express 16, 15059–15068 (2008). [CrossRef] [PubMed]
  6. G. Chen, F. Abou-Galala, H. D. Z. Xu, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17, 3929–3940 (2009). [CrossRef] [PubMed]
  7. Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18, 12226–12238 (2010). [CrossRef] [PubMed]
  8. G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18, 10500–10509(2010). [CrossRef] [PubMed]
  9. D. Kedar and S. Arnon, “Non-line-of-sight optical wireless sensor network operating in multiscattering channel,” Appl. Opt. 45, 8454–8461 (2006). [CrossRef] [PubMed]
  10. D. M. Reilly, “Atmospheric optical communications in the middle ultraviolet,” Master’s thesis (Massachusetts Institute of Technology, 1976).
  11. D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. 69, 464–470(1979). [CrossRef]
  12. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8, 1964–1972 (1991). [CrossRef]
  13. L. Wang, Z. Xu, and B. M. Sadler, “Non-line-of-sight ultraviolet link loss in noncoplanar geometry,” Opt. Lett. 35, 1263–1265(2010). [CrossRef] [PubMed]
  14. M. A. Elshimy and S. Hranilovic, “Non-line-of-sight single-scatter propagation model for noncoplanar geometries,” J. Opt. Soc. Am. A 28, 420–428 (2011). [CrossRef]
  15. H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A 26, 2466–2469 (2009). [CrossRef]
  16. H. Ding, Z. Xu, and B. M. Sadler, “A path loss model for non-line-of-sight ultraviolet multiple scattering channels,” EURASIP J. Wireless Commun. Network. 2010, 598572 (2010). [CrossRef]
  17. R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. A 28, 686–695 (2011). [CrossRef]
  18. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, Vol. IS 5 of SPIE Institute Series (1989, SPIE), pp. 102–111.
  19. I. M. Sobol’, A Primer for the Monte Carlo Method (CRC Press, 1994).
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).
  21. M.Abramowitz and I.A.Stegun, eds., Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (Dover, 1972).
  22. M. Naito, “A method of calculating the solid angle subtended by a circular aperture,” J. Phys. Soc. Jpn. 12, 1122–1129(1957). [CrossRef]
  23. F. Paxton, “Solid angle calculation for a circular disk,” Rev. Sci. Instrum. 30, 254–258 (1959). [CrossRef]
  24. I. S. Jones, “The solid angle subtended by a circular disc with application to roadsigns,” Int. J. Math. Educ. Sci. Technol. 27, 667–674 (1996). [CrossRef]
  25. S. Tryka, “Angular distribution of the solid angle at a point subtended by a circular disk,” Opt. Commun. 137, 317–333 (1997). [CrossRef]
  26. E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport (Wiley, 1984).
  27. A. F. Bielajew, Fundamentals of the Monte Carlo Method for Neutral and Charged Particle Transport (2001), http://www-personal.engin.umich.edu/bielajew/MCBook/book.pdf.
  28. H. Kahn and T. E. Harris, “Estimation of particle transmission by random sampling, Monte Carlo method,” in Vol.  12 of National Bureau of Standards Applied Mathematics Series (1951), pp. 27–30.
  29. J.F.Briesmeister, ed., “MCNP—A general Monte Carlo N-particle transport code, Version 4C,” Report LA-13709-M (Los Alamos National Laboratory, 2000).
  30. G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, 83–96 (2000). [CrossRef]
  31. The MathWorks, Inc., “MathWorks—MATLAB and Simulink for technical computing,” http://www.mathworks.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited