Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Impact of finite receiver-aperture size in a non-line-of-sight single-scatter propagation model

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a single-scatter propagation model is developed that expands the classical model by considering a finite receiver-aperture size for non-line-of-sight communication. The expanded model overcomes some of the difficulties with the classical model, most notably, inaccuracies in scenarios with short range and low elevation angle where significant scattering takes place near the receiver. The developed model does not approximate the receiver aperture as a point, but uses its dimensions for both field-of-view and solid-angle computations. To verify the model, a Monte Carlo simulation of photon transport in a turbid medium is applied. Simulation results for temporal responses and path losses are presented at a wavelength of 260nm that lies in the solar-blind ultraviolet region.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Non-line-of-sight single-scatter propagation model for noncoplanar geometries

Mohamed A. Elshimy and Steve Hranilovic
J. Opt. Soc. Am. A 28(3) 420-428 (2011)

Non-line-of-sight ultraviolet single-scatter propagation model

Houfei Xiao, Yong Zuo, Jian Wu, Hongxiang Guo, and Jintong Lin
Opt. Express 19(18) 17864-17875 (2011)

Non-line-of-sight single-scatter propagation model

Mark R. Luettgen, Jeffrey H. Shapiro, and David M. Reilly
J. Opt. Soc. Am. A 8(12) 1964-1972 (1991)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved