OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: 2629–2641

Is the Kanizsa illusion triggered by the simultaneous contrast mechanism?

Eldar Ron and Hedva Spitzer  »View Author Affiliations

JOSA A, Vol. 28, Issue 12, pp. 2629-2641 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current illusory contour models do not predict the disappearance of the Kanizsa illusion due to specific spatial luminance distributions within the inducers. We suggest that these stimulus conditions are characterized by an insufficient amount of induced brightness. Our model’s core assumption is that contour edge detection of the Kanizsa illusion and the simultaneous contrast (brightness induction) effect are triggered by the same mechanism. The simultaneous contrast can immunize the occlusion detection mechanism against spatial and temporal noise. Our model contains physiologically inspired building blocks that detect the oriented contour edges, complete the illusory contours, and enhance them. The model succeeds in predicting the appearance and the disappearance of many different Kanizsa illusion variants.

© 2011 Optical Society of America

OCIS Codes
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: April 22, 2011
Revised Manuscript: October 4, 2011
Manuscript Accepted: October 12, 2011
Published: November 23, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Eldar Ron and Hedva Spitzer, "Is the Kanizsa illusion triggered by the simultaneous contrast mechanism?," J. Opt. Soc. Am. A 28, 2629-2641 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Marr, Vision (Freeman, 1982).
  2. G. Kanizsa, “Subjective contours,” Sci. Am. 234, 48–52 (1976). [CrossRef] [PubMed]
  3. P. J. Kellman and T. F. Shipley, “A theory of visual interpolation and object perception,” Cogn. Psychol. 23, 141–221 (1991). [CrossRef] [PubMed]
  4. P. J. Kellman, “Interpolation processes in the visual perception of objects,” Neural Netw. 16, 915–923 (2003). [CrossRef] [PubMed]
  5. G. Kanizsa, Organization in Vision (Praeger, 1979).
  6. M. Jory and R. Day, “The relationship between brightness contrast and illusory contours,” Perception 8, 3–9 (1979). [CrossRef] [PubMed]
  7. B. Dresp, “Local brightness mechanisms sketch out surfaces but do not fill them: Psychophysical evidence in the Kanizsa square,” Percept. Psychophys. 52, 562–570 (1992). [CrossRef] [PubMed]
  8. R. Shapley and J. Gordon, “Nonlinearity in the perception of form,” Percept. Psychophys. 37, 84–88 (1985). [CrossRef] [PubMed]
  9. S. Grossberg and E. Mingolla, “Neural dynamics of form perception: Boundary completion, illusory figures, and neon spreading,” Psychol. Rev. 92, 173–211 (1985). [CrossRef] [PubMed]
  10. S. Grossberg and E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psyhophys. 38, 141–171 (1985). [CrossRef]
  11. T. Banton and D. Levy, “The perceived strength of illusory contours,” Percept. Psychophys. 52, 676–684 (1992). [CrossRef] [PubMed]
  12. R. Von der Heydt, E. Peterhans, and G. Baumgartner, “Illusory contours and cortical neural responses,” Science 224 (4654), 1260–1262 (1984). [CrossRef] [PubMed]
  13. F. Heitger, R. Von der Heydt, E. Peterhans, L. Rosenthaler, and O. Kübler, “Simulation of neural contour mechanisms: representing anomalous contours,” Image Vision Comput. 16, 407–421 (1998). [CrossRef]
  14. J. D. Victor and M. M. Conte, “Quantitative study of effects of inducer asynchrony on illusory contour strength,” Invest. Ophthalmol. Visual Sci. 39, S206 (1998).
  15. Victor and M. Conte, “Illusory contour strength does not depend on the dynamics or relative phase of the inducers,” Vision Res. 40, 3475–3483 (2000). [CrossRef] [PubMed]
  16. G. Petter, “Nuove ricerche sperimentali sulla totalizzazione percettiva,” Riv. Psicologia 50, 213–227 (1956).
  17. M. Singh, D. D. Hoffman, and M. K. Albert, “Contour completion and relative depth: Petter’s rule and support ratio,” Psychon. Sci. 10, 423–428 (1999).
  18. I. Kojo, M. Liinasuo, and J. Rovamo, “Spatial and temporal properties of illusory figures,” Vision Res. 33, 897–901 (1993). [CrossRef] [PubMed]
  19. S. Petry, A. Harbeck, J. Conway, and J. Levey, “Stimulus determinants of brightness and distinctness of subjective contours,” Percept. Psychophys. 34, 169–174 (1983). [CrossRef] [PubMed]
  20. T. F. Shipley and P. J. Kellman, “Strength of visual interpolation depends on the ratio of physically specified to total edge length,” Percept. Psychophys. 52, 97–106 (1992). [CrossRef] [PubMed]
  21. D. L. Ringach and R. Shapeley, “Spatial and temporal properties of illusory contours and amodal boundary completion,” Vision Res. 36, 3037–3050 (1996). [CrossRef] [PubMed]
  22. A. Gove, S. Grossberg, and E. Mingolla, “Brightness perception, illusory contours, and corticogeniculate feedback,” Visual Neurosci. 12, 1027–1052 (1995). [CrossRef]
  23. S. Grossberg, E. Mingolla, and W. D. Ross, “How does the cortex do perceptual grouping?” Trends Neurosci. 20, 106–111 (1997). [CrossRef] [PubMed]
  24. S. Grossberg, “Cortical dynamics of three-dimensional figure-ground Perception of two-dimensional pictures,” Psychol. Rev. 104, 618–658 (1997). [CrossRef] [PubMed]
  25. W. D. Ross, S. Grossberg, and E. Mingolla, “Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps,” J. Neural Netw. 13, 571–588 (2000). [CrossRef]
  26. F. Heitger, L. Rosenthaler, R. Vonderheydt, E. Peterhans, and O. Kübler, “Simulation of neural Contour mechanisms—from simple to end-stopped cells,” Vision Res. 32, 963–981 (1992). [CrossRef] [PubMed]
  27. F. Heitger, “A computational model of neural contour processing : Figure–ground segregation and illusory contours,” in Proceedings of the Seventh IEEE International Conference on Computer Vision (IEEE, 1999).
  28. E. Peterhans and F. Heitger, “Simulation of neuronal responses defining depth order and contrast polarity at illusory contours in monkey area V2,” J. Comput. Neurosci. 10, 195–211 (2001). [CrossRef] [PubMed]
  29. K. Kumaran, D. Geiger, and L. Gurvits, “Illusory surface perception and visual organization,” Network: Comput. Neural Syst. 7, 33–60 (1996). [CrossRef]
  30. D. Geiger, H. Pao, and N. Rubin, “Salient and multiple illusory surfaces,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1998).
  31. A. Sarti, R. Malladi, and J. A. Sethian, “Subjective surfaces: A method for completing missing boundaries,” Proc. Natl. Acad. Sci. USA 97, 6258–6263 (2000). [CrossRef] [PubMed]
  32. L. H. Finkel and G. M. Edelman, “Integration of distributed cortical systems by reentry—a computer-simulation of interactive functionally segregated visual areas,” J. Neurosci. 9, 3188–3208 (1989). [PubMed]
  33. E. Saund, “Perceptual organization of occluding contours of opaque surfaces,” Comput. Vision Image Underst. 76, 70–82(1999). [CrossRef]
  34. L. R. Williams and D. W. Jacobs, “Local parallel computation of stochastic completion fields,” Neural Comput. 9, 859–881(1997). [CrossRef]
  35. S. Ullman, “Filling-in gaps—shape of subjective contours and a model for their generation,” Biol. Cybern. 25, 1–6 (1976).
  36. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes—active contour models,” Int. J. Comput. Vision 1, 321–331 (1988). [CrossRef]
  37. S. Zucker, “Two stages of curve detection suggest two styles of visual computation,” Neural Comput. 1, 68–81 (1989). [CrossRef]
  38. G. Guy and G. Medioni, “Inferring global perceptual contours from local features,” Int. J. Comput. Vision 20, 113–133 (1996). [CrossRef]
  39. D. Hubel and T. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243(1968). [PubMed]
  40. B. Spehar, “Degraded illusory contour formation with non-uniform inducers in Kanizsa configurations: the role of contrast polarity,” Vision Res. 40, 2653–2659 (2000). [CrossRef] [PubMed]
  41. E. Heinemann, “Simultaneous brightness induction as a function of inducing-and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955). [CrossRef] [PubMed]
  42. E. Heinemann, “Simultaneous brightness induction,” in Handbook of Sensory Physiology, D.Jameson and L.M.Hurvich, eds. (Springer, 1972).
  43. J. Kinney, “Factors affecting induced color,” Vision Res. 2, 503–525 (1962). [CrossRef]
  44. M. F. Wesner and S. K. Shevell, “Color-perception within a chromatic context—changes in red green equilibria caused by noncontiguous light,” Vision Res. 32, 1623–1634 (1992). [CrossRef] [PubMed]
  45. R. Dahari and H. Spitzer, “Spatiotemporal adaptation model for retinal ganglion cells,” J. Opt. Soc. Am. A 13, 419–435 (1996). [CrossRef]
  46. H. Spitzer and Y. Barkan, “Computational adaptation model and its predictions for color induction of first and second orders,” Vision Res. 45, 3323–3342 (2005). [CrossRef] [PubMed]
  47. H. Spitzer, Y. Karasik, and S. Einav, “Biological gain control for high dynamic range compression,” in Proceedings of IS&T/SID Eleventh Color Imaging Conference (IS&T/SID, 2003).
  48. M. Lamberg-Rekem, Department of Biomedical Engineering, Tel Aviv University, 69978 Tel Aviv, Israel, and H. Spitzer are preparing a manuscript to be called “Does chromatic Kanizsa exist?”
  49. E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science, 4th ed. (McGraw-Hill, 2000).
  50. D. H. Hubel, Eye, Brain, and Vision, Scientific American Library Series (Scientific American Library, 1988).
  51. R. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Progr. Retin. Res. 3, 263–346 (1984). [CrossRef]
  52. B. Sakmann and O. D. Creutzfeldt, “Scotopic and mesopic light adaptation in cats retina,” Pflugers Arch. 313, 168–185 (1969). [CrossRef] [PubMed]
  53. M. Okamoto, T. Naito, O. Sadakane, H. Osaki, and H. Sato, “Surround suppression sharpens orientation tuning in the cat primary visual cortex,” Eur. J. Neurosci. 29, 1035–1046 (2009). [CrossRef] [PubMed]
  54. J. R. Cavanaugh, W. Bair, and J. A. Movshon, “Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons,” J. Neurophysiol. 88, 2530–2546 (2002). [CrossRef] [PubMed]
  55. R. Shapley, M. Hawken, and D. L. Ringach, “Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition,” Neuron 38, 689–699 (2003). [CrossRef] [PubMed]
  56. R. Benyishai, R. L. Baror, and H. Sompolinsky, “Theory of orientation tuning in visual-cortex,” Proc. Natl. Acad. Sci. USA 92, 3844–3848 (1995). [CrossRef]
  57. B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. D. Freeman, “The effects of contrast on visual orientation and spatial-frequency discrimination—a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987). [PubMed]
  58. C. Gilbert and T. Wiesel, “Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex,” J. Neurosci. 9, 2432–2442 (1989). [PubMed]
  59. Z. F. Kisvarday and U. T. Eysel, “Functional and structural topography of horizontal inhibitory connections in cat visual cortex,” Eur. J. Neurosci. 5, 1558–1572 (1993). [CrossRef] [PubMed]
  60. H. Spitzer and S. Semo, “Color constancy: a biological model and its application for still and video images,” Pattern Recogn. 35, 1645–1659 (2002). [CrossRef]
  61. H. Spitzer and A. Rosenbluth, “Color constancy: The role of low-level mechanisms,” Spatial Vis. 15, 277–302 (2002). [CrossRef]
  62. K. Prazdny, “Illusory contours are not caused by simultaneous brightness contrast,” Percept. Psychophys. 34, 403–404 (1983). [CrossRef] [PubMed]
  63. H. Spitzer and S. Hochstein, “A complex-cell receptive-field model,” J. Neurophysiol. 53, 1266–1286 (1985). [PubMed]
  64. N. Rubin, “The role of junctions in surface completion and contour matching,” Perception 30, 339–366 (2001). [CrossRef] [PubMed]
  65. G. W. Lesher and E. Mingolla, “The role of edges and line-ends in illusory contour formation,” Vision Res. 33, 2253–2270 (1993). [CrossRef] [PubMed]
  66. S. Grossberg and A. Yazdanbakhsh, “Laminar cortical dynamics of 3D surface perception: Stratification, transparency, and neon color spreading,” Vision Res. 45, 1725–1743 (2005). [CrossRef] [PubMed]
  67. T. F. Shipley and P. J. Kellman, “The role of discontinuities in the perception of subjective figures,” Percept. Psychophys. 48, 259–270 (1990). [CrossRef] [PubMed]
  68. M. K. Albert and D. D. Hoffman, “Genericity in spatial vision,” in Geometric Representations of Perceptual Phenomena: Articles in Honour of Tarow Indow’s 70th Birthday, D.Luce, K.Romney, D.Hoffman, and M.D’Zmura, eds. (Erlbaum, 1995). [PubMed]
  69. G. Ben-Yosef and O. Ben-Shahar, “Minimum length in the tangent bundle as a model for curve completion,” in Proceedings of the 23rd Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010).
  70. P. J. Kellman, C. Yin, and T. F. Shipley, “A common mechanism for illusory and occluded object completion,” J. Exp. Psychol. 24, 859–869 (1998). [CrossRef]
  71. A. Michotte, G. Thinés, and G. Crabbé, “Les compléments amodaux des structures perceptives,” Studia Psychologica (Institut de Psychologie de l’Université de Louvain, 1964).
  72. H. G. Barrow and J. M. Tenenbaum, “Interpreting line drawings as three-dimensional surfaces,” Artif. Intell. 17, 75–116 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited