OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: 2647–2654

Electromagnetic plane-wave pulse transmission into a Lorentz half-space

Natalie A. Cartwright  »View Author Affiliations


JOSA A, Vol. 28, Issue 12, pp. 2647-2654 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002647


View Full Text Article

Enhanced HTML    Acrobat PDF (525 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation of an electromagnetic plane-wave signal obliquely incident upon a Lorentz half-space is studied analytically. Time-domain asymptotic expressions that increase in accuracy with propagation distance are derived by application of uniform saddle point methods on the Fourier–Laplace integral representation of the transmitted field. The results are shown to be continuous in time and comparable with numerical calculations of the field. Arrival times and angles of refraction are given for prominent transient pulse features and the steady-state signal.

© 2011 Optical Society of America

OCIS Codes
(350.5500) Other areas of optics : Propagation
(350.7420) Other areas of optics : Waves

ToC Category:
Physical Optics

History
Original Manuscript: August 8, 2011
Revised Manuscript: October 24, 2011
Manuscript Accepted: October 24, 2011
Published: November 28, 2011

Citation
Natalie A. Cartwright, "Electromagnetic plane-wave pulse transmission into a Lorentz half-space," J. Opt. Soc. Am. A 28, 2647-2654 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-12-2647


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Sommerfeld, “Über die Fortpflanzung des Lichtes in dispergierenden Medien,” Ann. Phys. 44, 177–202 (1914). [CrossRef]
  2. L. Brillouin, “Über die Fortpflanzung des Lichtes in dispergierenden Medien,” Ann. Phys. 44, 203–240 (1914). [CrossRef]
  3. L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
  4. N. A. Cartwright and K. E. Oughstun, “Uniform asymptotics applied to ultrawideband pulse propagation,” SIAM Rev. 49, 628–648 (2007). [CrossRef]
  5. K. E. Oughstun, “Dynamical evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics,” IEEE Trans. Antennas Propag. 53, 1582–1590 (2005). [CrossRef]
  6. N. A. Cartwright and K. E. Oughstun, “Ultrawideband pulse propagation through a lossy plasma,” Radio Sci. 44, RS4013 (2009). [CrossRef]
  7. M. Tanaka, M. Fujiwara, and H. Ikegami, “Propagation of a Gaussian wave packet in an absorbing medium,” Phys. Rev. A 34, 4851–4858 (1986). [CrossRef] [PubMed]
  8. C. M. Balictsis and K. E. Oughstun, “Generalized asymptotic description of the propagated field dynamics in Gaussian pulse propagation in a linear, causally dispersive medium,” Phys. Rev. E 55, 1910–1921 (1997). [CrossRef]
  9. J. Laurens and K. Oughstun, “Electromagnetic impulse response of triply-distilled water,” in Ultra-Wideband, Short-Pulse Electromagnetics 4, J.Shiloh, B.Mandelbaum, and E.Heyman, eds. (Springer, 1999), pp. 243–264.
  10. S. Dvorak and D. Dudley, “Propagation of ultra-wideband electromagnetic pulses through dispersive media,” IEEE Trans. Electromagn. Compat. 37, 192–200 (1995). [CrossRef]
  11. W. Colby, “Signal propagation in dispersive media,” Phys. Rev. 5, 253–265 (1915). [CrossRef]
  12. E. G. Skrotskaya, A. N. Makhlin, V. A. Kashin, and G. V. Skrotskii, “Formation of a forerunner in the passage of the front of a light pulse through a vacuum-medium interface,” Sov. Phys. JETP 29, 123–125 (1969).
  13. D. G. Dudley, T. M. Papazoglou, and R. C. White, “On the interaction of a transient electromagnetic plane wave and a lossy half-space,” J. Appl. Phys. 45, 1171–1175 (1974). [CrossRef]
  14. T. M. Papazoglou, “Transmission of a transient electromagnetic plane wave into a lossy half-space,” J. Appl. Phys. 46, 3333–3341(1975). [CrossRef]
  15. H. Pao, S. L. Dvorak, and D. G. Dudley, “An accurate and efficient analysis for transient plane waves obliquely incident on a conductive half space (TE case),” IEEE Trans. Antennas Propag. 44, 918–924 (1996). [CrossRef]
  16. H. Pao, S. L. Dvorak, and D. G. Dudley, “An accurate and efficient analysis for transient plane waves obliquely incident on a conductive half space (TM case),” IEEE Trans. Antennas Propag. 44, 925–932 (1996). [CrossRef]
  17. J. B. Ehrman and J. LoVetri, “Time-domain electromagnetic plane waves in static and dynamic conducting media II,” IEEE Trans. Electromagn. Compat. 37, 17–25 (1995). [CrossRef]
  18. A. M. Attiya, E. A. El-Diwany, and A. M. Shaarawi, “Transmission and reflection of TE electromagnetic X-wave normally incident on a lossy dispersive half-space,” in Proceedings of the Seventeenth National Radio Science Conference (2000), pp. B11.1–B11.12.
  19. E. Gitterman and M. Gitterman, “Transient processes for incidence of a light signal on a vacuum-medium interface,” Phys. Rev. A 13, 763–776 (1976). [CrossRef]
  20. E. L. Mokole and S. N. Samaddar, “Transmission and reflection of normally incident, pulsed electromagnetic plane waves upon a Lorentz half-space,” J. Opt. Soc. Am. B 16, 812–831(1999). [CrossRef]
  21. K. E. Oughstun and G. C. Sherman, Pulse Propagation in Causal Dielectrics (Springer-Verlag, 1994).
  22. J. A. Marozas, “Angular spectrum representation of ultrawideband electromagnetic pulse propagation in lossy, dispersive dielectric slab waveguides,” Ph.D. dissertation (University of Vermont, 1998).
  23. K. E. Oughstun, Electromagnetic and Optical Pulse Propagation 2 (Springer, 2006).
  24. R. A. Handelsman and N. Bleistein, “Uniform asymptotic expansions of integrals that arise in the analysis of precursors,” Arch. Ration. Mech. Anal. 35, 267–283 (1969). [CrossRef]
  25. C. Chester, B. Friedman, and F. Ursell, “An extension of the method of steepest descents,” Proc. Cambridge Philos. Soc. 53, 599–611 (1957). [CrossRef]
  26. L. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, 1973).
  27. Empirical evidence suggests that the relative error between asymptotic and numerical results is less than 10% when the pulse has propagated at least one absorption depth into the material, and that this error decreases with propagation distance.
  28. Here, we adjusted the power of γ1 from 4 to 2 in the expression for v1 given in , as well as dividing Eqs. (21) and (22) of by 2π in order to obtain better accuracy.
  29. J. G. Blaschak and J. Franzen, “Precursor propagation in dispersive media from short-rise-time pulses at oblique incidence,” J. Opt. Soc. Am. B 12, 1501–1512 (1995). [CrossRef]
  30. K. E. Oughstun and G. C. Sherman, “Comparison of the signal velocity of a pulse with the energy velocity of a time-harmonic field in Lorentz media,” in Proceedings of the URSI Symposium on Electromagnetic Wave Theory (1980), pp. C1–C5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited