OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 118–125

Analysis of electromagnetic scattering by uniaxial anisotropic bispheres

Zheng-Jun Li, Zhen-Sen Wu, and Hai-Ying Li  »View Author Affiliations


JOSA A, Vol. 28, Issue 2, pp. 118-125 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000118


View Full Text Article

Enhanced HTML    Acrobat PDF (1491 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.

© 2011 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles

ToC Category:
Scattering

History
Original Manuscript: August 30, 2010
Revised Manuscript: November 5, 2010
Manuscript Accepted: November 8, 2010
Published: January 11, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Zheng-Jun Li, Zhen-Sen Wu, and Hai-Ying Li, "Analysis of electromagnetic scattering by uniaxial anisotropic bispheres," J. Opt. Soc. Am. A 28, 118-125 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-2-118


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. N. Papadakis, N. K. Uzunoglu, and C. N. Capsalis, “Scattering of a plane wave by a general anisotropic dielectric ellipsoid,” J. Opt. Soc. Am. A 7, 991–997 (1990). [CrossRef]
  2. Y. L. Geng, X. B. Wu, and L. W. Li, “Analysis of electromagnetic scattering by a plasma anisotropic sphere,” Radio Sci. 38, 1104 (2003). [CrossRef]
  3. Y. L. Geng, X. B. Wu, and L. W. Li, “Mie scattering by a uniaxial anisotropic sphere,” Phys. Rev. E 70, 056609 (2004). [CrossRef]
  4. Z. S. Wu, Q. K. Yuan, Y. Peng, and Z. J. Li, “Internal and external electromagnetic fields for on-axis Gaussian beam scattering from a uniaxial anisotropic sphere,” J. Opt. Soc. Am. A 26, 1778–1787 (2009). [CrossRef]
  5. Z. S. Wu, Q. K. Yuan, and Z. J. Li, “Electromagnetic scattering for a uniaxial anisotropic sphere in an off-axis obliquely incident Gaussian beam,” J. Opt. Soc. Am. A 27, 2097 (2010). [CrossRef]
  6. B. Stout, M. Nevière, and E. Popov, “Mie scattering by an anisotropic object. Part I. Homogeneous sphere,” J. Opt. Soc. Am. A 23, 1111–1123 (2006). [CrossRef]
  7. B. Stout, M. Nevière, and E. Popov, “Mie scattering by an anisotropic object. Part II. Arbitrary-shaped object: differential theory,” J. Opt. Soc. Am. A 23, 1124–1134 (2006). [CrossRef]
  8. K. L. Wong and H. T. Chen, “Electromagnetic scattering by a uniaxially anisotropic sphere,” in IEE Proceedings H: Microwaves, Antennas and Propagation (IEEE, 1992), pp. 314–318. [CrossRef]
  9. C. W. Qiu, L. W. Li, and T. S. Yeo, “Scattering by rotationally symmetric anisotropic spheres: potential formulation and parametric studies,” Phys. Rev. E 75, 026609 (2007). [CrossRef]
  10. J. Schneider and S. Hudson, “The finite-difference time-domain method applied to anisotropic material,” IEEE Trans. Antenn. Propag. 41, 994–995 (1993). [CrossRef]
  11. J. Schuster and R. J. Lubber, “Finite difference time domain analysis of arbitrarily biased magnetized ferrites,” Radio Sci. 31, 923 (1996). [CrossRef]
  12. L. X. Dou and A. R. Sebak, “3D FDTD method for arbitrary anisotropic materials,” Microw. Opt. Technol. Lett. 48, 2083–2090(2006). [CrossRef]
  13. R. D. Graglia, P. L. E. Uslenghi, and R. S. Zich, “Moment method with isoparametric elements for three-dimensional anisotropic scatterers,” Proc. IEEE 77, 750–760 (1989). [CrossRef]
  14. V. V. Varadan, A. Lakhtakia, and V. K. Varadan, “Scattering by three-dimensional anisotropic scatterers,” IEEE Trans. Antennas Propag. 37, 800–802 (1989). [CrossRef]
  15. J. H. Brunding and Y. T. Lo, “Multiple scattering of EM waves by spheres part I—multipole expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. 19, 378–390 (1971). [CrossRef]
  16. J. H. Brunding and Y. T. Lo, “Multiple scattering of EM waves by spheres part II—numerical and experimental results,” IEEE Trans. Antennas Propag. 19, 391–400 (1971). [CrossRef]
  17. K. A. Fuller and G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres I: linear chains,” Opt. Lett. 13, 90–92(1988). [CrossRef] [PubMed]
  18. K. A. Fuller and G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres II: clusters of arbitrary configuration,” Opt. Lett. 13, 1063–1065 (1988). [CrossRef] [PubMed]
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  20. F. Borghese, P. Denti, G. Toscano, and O. I. Sindoni, “Electromagnetic scattering by a cluster of spheres,” Appl. Opt. 18, 116–120 (1979). [CrossRef] [PubMed]
  21. F. Borghese, P. Denti, R. Saija, and G. Toscano, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Tech. 3, 227–235 (1984). [CrossRef]
  22. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. Lond., Ser. A 433, 599–614 (1991). [CrossRef]
  23. D. W. Mackowski, “Calculation of total cross section of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861(1994). [CrossRef]
  24. D. W. Mackowski, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2277 (1996). [CrossRef]
  25. Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995). [CrossRef] [PubMed]
  26. Y. L. Xu, “Calculation of the addition coefficients in electromagnetic multisphere-scattering theory,” J. Comput. Phys. 127, 285–298 (1996). [CrossRef]
  27. Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres: far field,” Appl. Opt. 36, 9496–9508 (1997). [CrossRef]
  28. Y. L. Xu, B. Å. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, “Calculation of the heat-source function in photophoresis of aggregated spheres,” Phys. Rev. E 60, 2347–2365(1999). [CrossRef]
  29. Y. L. Xu, “Scattering Mueller matrix of an ensemble of variously shaped small particles,” J. Opt. Soc. Am. A 20, 2093–2105(2003). [CrossRef]
  30. D. Sarkar and N. J. Halas, “General vector basis function solution of Maxwell’s equations,” Phys. Rev. E 56, 1102–1112(1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited