OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 263–271

Fitting-determined formulation of effective medium approximation for 3D trench structures in model-based infrared reflectrometry

Chuanwei Zhang, Shiyuan Liu, Tielin Shi, and Zirong Tang  »View Author Affiliations


JOSA A, Vol. 28, Issue 2, pp. 263-271 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000263


View Full Text Article

Enhanced HTML    Acrobat PDF (1393 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The success of the model-based infrared reflectrometry (MBIR) technique relies heavily on accurate modeling and fast calculation of the infrared metrology process, which continues to be a challenge, especially for three- dimensional (3D) trench structures. In this paper, we present a simplified formulation for effective medium approximation (EMA), determined by a fitting-based method for the modeling of 3D trench structures. Intensive investigations have been performed with an emphasis on the generality of the fitting-determined (FD)-EMA formulation in terms of trench depth, trench pitch, and incidence angle so that its application is not limited to a particular configuration. Simulations conducted on a taper trench structure have further verified the proposed FD-EMA and demonstrated that the MBIR metrology with the FD-EMA-based model achieves an accuracy one order higher than that of the conventional zeroth-order EMA-based model.

© 2011 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(300.6340) Spectroscopy : Spectroscopy, infrared
(050.2065) Diffraction and gratings : Effective medium theory
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 7, 2010
Revised Manuscript: November 26, 2010
Manuscript Accepted: December 14, 2010
Published: February 1, 2011

Citation
Chuanwei Zhang, Shiyuan Liu, Tielin Shi, and Zirong Tang, "Fitting-determined formulation of effective medium approximation for 3D trench structures in model-based infrared reflectrometry," J. Opt. Soc. Am. A 28, 263-271 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-2-263


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Rosenthal, C. A. Durán, J. Tower, and A. Mazurenko, “Model-based infrared metrology for advanced technology nodes and 300 mm wafer processing,” AIP Conf. Proc. 788, 620–624 (2005). [CrossRef]
  2. A. A. Maznev, A. Mazurenko, C. A. Durán, and M. Gostein, “Measuring trench structures for microelectronics with model-based infrared reflectometry,” AIP Conf. Proc. 931, 74–78 (2007). [CrossRef]
  3. C. A. Durán, A. A. Maznev, G. T. Merklin, A. Mazurenko, and M. Gostein, “Infrared reflectometry for metrology of trenches in power devices,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2007), pp. 175–179.
  4. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
  5. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  6. P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592–1598(1997). [CrossRef]
  7. C. J. Raymond, M. R. Murnane, S. L. Prins, S. S. H. Naqvi, J. W. Hosch, and J. R. McNeil, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15, 361–368(1997). [CrossRef]
  8. X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001). [CrossRef]
  9. P. Reinig, R. Dost, M. Mort, T. Hingst, U. Mantz, J. Moffitt, S. Shakya, C. J. Raymond, and M. Littau, “Metrology of deep trench etched memory structures using 3D scatterometry,” Proc. SPIE 5752, 559–569 (2005). [CrossRef]
  10. T. C. Choi, Effective Medium Theory: Principles and Applications (Oxford University, 1999).
  11. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  12. H. Kikuta, H. Yoshida, and K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2, 92–99 (1995). [CrossRef]
  13. H. Kikuta, Y. Ohira, H. Kubo, and K. Iwata, “Effective medium theory of two-dimensional subwavelength gratings in the non-quasi-static limit,” J. Opt. Soc. Am. A 15, 1577–1585 (1998). [CrossRef]
  14. P. Lalanne and J. P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15, 1843–1851 (1998). [CrossRef]
  15. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167(1993). [CrossRef]
  16. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997). [CrossRef]
  17. W. Yu, K. Takahara, T. Konishi, T. Yotsuya, and Y. Ichioka, “Fabrication of multilevel phase computer-generated hologram elements based on effective medium theory,” Appl. Opt. 39, 3531–3536 (2000). [CrossRef]
  18. W. Freese, T. Kämpfe, E. B. Kley, and A. Tünnermann, “Design of binary subwavelength multiphase level computer generated holograms,” Opt. Lett. 35, 676–678 (2010). [CrossRef]
  19. A. Weidner, M. Slodowski, C. Halm, C. Schneider, and L. Pfitzner, “Effective-medium model for fast evaluation of scatterometric measurements on gratings,” Proc. SPIE 5375, 232–243 (2004). [CrossRef]
  20. I. Abdulhalim, “Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit,” Appl. Opt. 46, 2219–2228(2007). [CrossRef]
  21. B. C. Bergner, T. A. Germer, and T. J. Suleski, “Effective medium approximations for modeling optical reflectance from gratings with rough edges,” J. Opt. Soc. Am. A 27, 1083–1090 (2010). [CrossRef]
  22. C. W. Zhang, S. Y. Liu, T. L. Shi, and Z. R. Tang, “Improved model-based infrared reflectrometry for measuring deep trench structures,” J. Opt. Soc. Am. A 26, 2327–2335 (2009). [CrossRef]
  23. J. L. Jackson and S. R. Coriell, “Transport coefficients of composite materials,” J. Appl. Phys. 39, 2349–2354 (1968). [CrossRef]
  24. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31, 4371–4376 (1992). [CrossRef]
  25. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings,” J. Opt. Soc. Am. A 11, 2695–2703 (1994). [CrossRef]
  26. P. Lalanne and D. L. Lalanne, “On the effective medium theory of subwavelength periodic structure,” J. Mod. Opt. 43, 2063–2085(1996). [CrossRef]
  27. P. Y. Guittet, U. Mantz, and P. Weidner, “Infrared spectroscopic ellipsometry in semiconductor manufacturing,” Proc. SPIE 5375, 771–778 (2004). [CrossRef]
  28. S. Moon and D. Kim, “Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals,” J. Opt. Soc. Am. A 23, 199–207 (2006). [CrossRef]
  29. S. Moon and D. Kim, “Investigation of an effective medium theory for metallic periodic structure,” Proc. SPIE 6128, 61281M (2006). [CrossRef]
  30. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  31. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited