OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 272–277

Trapping and releasing light by mechanical implementation in metamaterial waveguides

Yongyao Chen, Jianqiang Gu, X. C. Xie, and Weili Zhang  »View Author Affiliations

JOSA A, Vol. 28, Issue 2, pp. 272-277 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (435 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that light trapping and releasing can be switched by a mechanic tuning effect in metamaterial waveguides. The transition mechanism between the trapping and releasing states relies on the synergetic effect of the local Bragg reflection and cavity resonance in the waveguides. As a proof-of-concept demonstration, a heterostructured metamaterial waveguide comprised of dielectric claddings and a tapered metamaterial core formed by arrays of metal slats is analytically and numerically investigated. The spatial separation of the trapped light with various frequencies and the transition between the trapping and releasing states can be predicted by a “rainbow equation.” The proposed light trapping and releasing scheme based on the mechanical implementation of waveguide geometrical parameters can be exploited to develop opto-mechanical devices for slow light technology.

© 2011 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.0310) Optics at surfaces : Thin films
(260.0260) Physical optics : Physical optics
(160.3918) Materials : Metamaterials

ToC Category:
Optical Devices

Original Manuscript: July 20, 2010
Revised Manuscript: November 5, 2010
Manuscript Accepted: November 7, 2010
Published: February 1, 2011

Yongyao Chen, Jianqiang Gu, X. C. Xie, and Weili Zhang, "Trapping and releasing light by mechanical implementation in metamaterial waveguides," J. Opt. Soc. Am. A 28, 272-277 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007). [CrossRef]
  4. J. A. Ferrari and C. D. Perciante, “Superlenses, metamaterials, and negative refraction,” J. Opt. Soc. Am. A 26, 78–84 (2009). [CrossRef]
  5. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996). [CrossRef] [PubMed]
  6. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004). [CrossRef] [PubMed]
  7. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005). [CrossRef] [PubMed]
  8. J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009). [CrossRef] [PubMed]
  9. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14, 13021–13029 (2006). [CrossRef] [PubMed]
  10. J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC Press, 2008), pp. 3–59.
  11. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803(2008). [CrossRef] [PubMed]
  12. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelength,” Phys. Rev. Lett. 102, 056801 (2009). [CrossRef] [PubMed]
  13. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008). [CrossRef] [PubMed]
  14. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef] [PubMed]
  15. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]
  16. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009). [CrossRef]
  17. A. C. Peacock and N. G. R. Broderick, “Guided modes in channel waveguides with a negative index of refraction,” Opt. Express 11, 2502–2510 (2003). [CrossRef] [PubMed]
  18. K. L. Tsakmakidis, O. Hess, and A. D. Boardman, “‘Trapped rainbow’ storage of light in metamaterials,” Nature (London) 450, 397–401 (2007). [CrossRef]
  19. G. N. Nielson, M. J. Shaw, O. B. Spahn, et al., “High-speed, sub-pull-in voltage MEMS switching,” SANDIA Report (SAND, 2008), pp. 17–21.
  20. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995),pp. 38–51.
  21. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006). [CrossRef] [PubMed]
  22. A. Barbara, P. Quémerais, E. Bustarret, T. López-Rios, and T. Fournier, “Electromagnetic resonances of sub-wavelength rectangular metallic gratings,” Eur. Phys. J. D 23, 143–154 (2003). [CrossRef]
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, 2000), pp. 109–174.
  24. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002). [CrossRef]
  25. B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008). [CrossRef]
  26. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996). [CrossRef] [PubMed]
  27. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3 nm-thick cavity,” Phys. Rev. Lett. 96, 097401 (2006). [CrossRef] [PubMed]
  28. A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Phys. Rev. Lett. 101, 033902 (2008). [CrossRef] [PubMed]
  29. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45–52 (2007). [CrossRef]
  30. J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Collimation of sound assisted by acoustic surface waves,” Nature Phys. 3, 851–852(2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited