OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 82–95

Eigenfunctions and self-imaging phenomena of the two-dimensional nonseparable linear canonical transform

J.-J. Ding and S.-C. Pei  »View Author Affiliations


JOSA A, Vol. 28, Issue 2, pp. 82-95 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000082


View Full Text Article

Enhanced HTML    Acrobat PDF (691 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The two-dimensional (2D) nonseparable linear canonical transform (NSLCT) is a generalization of the fractional Fourier transform (FRFT) and the LCT. It is useful in signal analysis and optics. The eigenfunctions of both the FRFT and the LCT have been derived. In this paper, we extend the previous work and derive the eigenfunctions of the 2D NSLCT. Although the 2D NSLCT is very complicated and has 16 parameters, with the proposed methods, we can successfully find the eigenfunctions of the 2D NSLCT in all cases. Since many optical systems can be represented by the 2D NSLCT, our results are useful for analyzing the self-imaging phenomena of optical systems.

© 2011 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms
(080.2575) Geometric optics : Fractional Fourier transforms

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: September 14, 2010
Revised Manuscript: November 10, 2010
Manuscript Accepted: November 10, 2010
Published: January 5, 2011

Citation
J.-J. Ding and S.-C. Pei, "Eigenfunctions and self-imaging phenomena of the two-dimensional nonseparable linear canonical transform," J. Opt. Soc. Am. A 28, 82-95 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-2-82


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. M. Ozaktas, M. A. Kutay, and Z. Zalevsky, The Fractional Fourier Transform with Applications in Optics and Signal Processing (John Wiley, 2000).
  2. V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Maths. Appl. 25, 241-265 (1980). [CrossRef]
  3. H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743-751 (1995). [CrossRef]
  4. K. B. Wolf, “Canonical transforms,” in Integral Transforms in Science and Engineering, (Plenum, 1979), pp. 381-416.
  5. L. M. Bernardo, “ABCD matrix formalism of fractional Fourier optics,” Opt. Eng. 35, 732-740 (1996). [CrossRef]
  6. S. Abe and J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801-1803 (1994). [CrossRef] [PubMed]
  7. Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “The ABCD-Bessel transformation,” Opt. Commun. 147, 39-41 (1998). [CrossRef]
  8. H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt. Lett. 31, 35-37 (2006). [CrossRef] [PubMed]
  9. J. J. Healy and J. T. Sheridan, “Fast linear canonical transforms,” J. Opt. Soc. Am. A 27, 21-30 (2010). [CrossRef]
  10. D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006). [CrossRef]
  11. J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Additional sampling criterion for the linear canonical transform,” Opt. Lett. 33, 2599-2601 (2008). [CrossRef] [PubMed]
  12. F. S. Oktem and H. M. Ozaktas, “Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product,” J. Opt. Soc. Am. A 27, 1885-1895 (2010). [CrossRef]
  13. D. F. V. James and G. S. Agarwal, “The generalized Fresnel transform and its applications to optics,” Opt. Commun. 126, 207-212 (1996). [CrossRef]
  14. S. C. Pei and J. J. Ding, “Eigenfunctions of linear canonical transform,” IEEE Trans. Signal Process. 50, 11-26 (2002). [CrossRef]
  15. T. Alieva and A. M. Barbe, “Self-imaging in fractional Fourier transform systems,” Opt. Commun. 152, 11-15 (1998). [CrossRef]
  16. G. B. Folland, Harmonic Analysis in Phase Space (Princeton University, 1989).
  17. S. C. Pei and J. J. Ding, “Two-dimensional affine generalized fractional Fourier transform,” IEEE Trans. Signal Process. 49, 878-897 (2001). [CrossRef]
  18. S. A. Collins, Jr., “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. A 60, 1168-1177(1970). [CrossRef]
  19. A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals,” J. Opt. Soc. Am. A 27, 1288-1302 (2010). [CrossRef]
  20. M. J. Bastiaans and T. Alieva, “Classification of lossless first order optical systems and the linear canonical transformation,” J. Opt. Soc. Am. A 24, 1053-1062 (2007). [CrossRef]
  21. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  22. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Gyrator transform: properties and applications,” Opt. Express 15, 2190-2203(2007). [CrossRef] [PubMed]
  23. S. C. Pei and J. J. Ding, “Properties, digital implementation, applications, and self image phenomena of the Gyrator transform,” presented at the 17th European Signal Processing Conference, Glasgow, Scotland, 24-28 Aug. 2009.
  24. A. W. Lohmann and J. A.Thomas,“Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337-4340 (1990). [CrossRef] [PubMed]
  25. S. C. Pei and J. J. Ding, “Matlab programs for generating the eigenfunctions of the 2-D non-separable linear canonical transform,” http://djj.ee.ntu.edu.tw/NSLCTevc.htm.
  26. D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “Graded-index fibers, Wigner distribution and the fractional Fourier transform,” Appl. Opt. 33, 6188-6193 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited