OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 363–372

Multicasting optical interconnects using liquid crystal over silicon devices

Andreas Georgiou, Jeroen Beeckman, and Kristiaan Neyts  »View Author Affiliations

JOSA A, Vol. 28, Issue 3, pp. 363-372 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work presents the characteristics and expected capabilities of an optical interconnect that uses a diffractive liquid crystal over silicon (LCOS) device as a routing element. Such an interconnect may be used in a neighborhood’s optical network to distribute high definition television, thus avoiding an electronic or optical transmitter for each user. The optimal characteristics of the LCOS device are calculated in terms of pixel number and silicon area and found to be feasible with today’s technology. Finally, its performance in terms of optical efficiency and number of output ports is evaluated and found suitable for a neighborhood with hundreds of households.

© 2011 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.1995) Holography : Digital holography
(060.6718) Fiber optics and optical communications : Switching, circuit
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 7, 2010
Revised Manuscript: December 18, 2010
Manuscript Accepted: December 20, 2010
Published: February 18, 2011

Andreas Georgiou, Jeroen Beeckman, and Kristiaan Neyts, "Multicasting optical interconnects using liquid crystal over silicon devices," J. Opt. Soc. Am. A 28, 363-372 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Komarcevic, I. G. Manolis, T. D. Wilkinson, and W. A. Crossland, “Polarization effects in reconfigurable liquid crystal phase holograms,” Opt. Commun. 244, 105–110 (2005). [CrossRef]
  2. K. L. Tan, S. T. Warr, M. G. Ilias, T. D. Wilkinson, M. M. Redmond, A. W. Crossland, and B. Robertson, “Dynamic holography for optical interconnections. I. Noise floor of low-crosstalk holographic switches,” J. Opt. Soc. Am. A 18, 195–204(2001). [CrossRef]
  3. K. L. Tan, S. T. Warr, M. G. Ilias, T. D. Wilkinson, M. M. Redmond, A. W. Crossland, and B. Robertson, “Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order,” J. Opt. Soc. Am. A 18, 205–215 (2001). [CrossRef]
  4. C. A. T. H. Tee, W. A. Crossland, T. D. Wilkinson, and A. B. Davey, “Binary phase modulation using electrically addressed transmissive and silicon backplane spatial light modulators,” Opt. Eng. 39, 2527–2534 (2000). [CrossRef]
  5. P. Evans, G. Baxter, H. Zhou, D. Abakoumov, S. Poole, and S. Frisken, “LCOS-based WSS with true integrated channel monitor for signal quality monitoring applications in ROADMS,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Digest) (Optical Society of America, 2008), pp. 1–3. [PubMed]
  6. W. A. Crossland, I. G. Manolis, M. M. Redmond, K. L. Tan, T. D. Wilkinson, M. J. Holmes, T. R. Parker, H. H. Chu, J. Croucher, V. A. Handerek, S. T. Warr, B. Robertson, I. G. Bonas, R. Franklin, C. Stace, H. J. White, R. A. Woolley, and G. Henshall, “Holographic optical switching: the ROSES demonstrator,” J. Lightwave Technol. 18, 1845–1854 (2000). [CrossRef]
  7. P. Chanclou, H. Ramanitra, P. Gravey, and M. Thual, “Design and performance of expanded mode fiber using microoptics,” J. Lightwave Technol. 20, 836–842 (2002). [CrossRef]
  8. X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Top. Quantum Electron. 9, 571–578(2003). [CrossRef]
  9. M. Anisetti, C. Ardagna, V. Bellandi, and E. Damiani, “Telecentric and achromatic F-theta scan lens system and method of use,” U.S. patent 5,404,247 (4 April 1995).
  10. T. E. Stern, G. Ellinas, and K. Bala, Multiwavelength Optical Networks: Architectures, Design, and Control (Cambridge University, 2009).
  11. JVC, “JVC develops the worlds smallest 1.27inch4K2K D-ILA device” (June 2007), www.jvc.co.jp.
  12. A. Georgiou, T. D. Wilkinson, N. Collings, and W. A. Crossland, “Algorithm for computing spot-generating holograms,” J. Opt. A Pure Appl. Opt. 10, 015306 (2008). [CrossRef]
  13. A. Kirk and T. Hall, “Design of binary computer generated holograms by simulated annealing: coding density and reconstruction error,” Opt. Commun. 94, 491–496 (1992). [CrossRef]
  14. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987). [CrossRef] [PubMed]
  15. A. Georgiou, M. Komarcevic, and W. A. Crossland, “Noise suppression in liquid crystal beam steering devices,” presented at SPIE Great Lakes Photonics Symposium, 12–16 June, 2006, Dayton, Ohio, USA.
  16. T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photon. 4, 388–394 (2010). [CrossRef]
  17. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).
  18. U. Efron, B. Apter, and E. Bahat-Treidel, “Fringing-field effect in liquid-crystal beam-steering devices an approximate analytical model,” J. Opt. Soc. Am. A 21, 1996–2008 (2004). [CrossRef]
  19. A. G. Georgiou, M. Komarcevic, T. D. Wilkinson, and W. A. Crossland, “Hologram optimisation using liquid crystal modelling,” Mol. Cryst. Liq. Cryst. 343, 511–526 (2005).
  20. R. James, M. C. Gardner, F. A. Fernández, and S. E. Day, “3D modelling of high resolution devices,” Mol. Cryst. Liq. Cryst. 450, 105–118 (2006). [CrossRef]
  21. P. Vanbrabant, J. Beeckman, K. Neyts, R. James, and F. A. Fernandez, “A finite element beam propagation method for simulation of liquid crystal devices,” Opt. Express 17, 10895–10909 (2009). [CrossRef] [PubMed]
  22. Intel Corporation, Intel Corporation website (2010). http://ark.intel.com.
  23. Brillian, “Brillian 2-Megapixel BR1920HC,” www.brilliancorp.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited