OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 420–428

Non-line-of-sight single-scatter propagation model for noncoplanar geometries

Mohamed A. Elshimy and Steve Hranilovic  »View Author Affiliations

JOSA A, Vol. 28, Issue 3, pp. 420-428 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (876 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a geometrical propagation model is developed that generalizes the classical single-scatter model under the assumption of first-order scattering and non-line-of-sight (NLOS) communication. The generalized model considers the case of a noncoplanar geometry, where it overcomes the restriction that the transmitter and the receiver cone axes lie in the same plane. To verify the model, a Monte Carlo (MC) radiative transfer model based on a photon transport algorithm is constructed. Numerical examples for a wavelength of 266 nm are illustrated, which corresponds to a solar-blind NLOS UV communication system. A comparison of the temporal responses of the generalized model and the MC simulation results shows close agreement. Path loss and delay spread are also shown for different pointing directions.

© 2011 Optical Society of America

OCIS Codes
(290.1310) Scattering : Atmospheric scattering
(350.5500) Other areas of optics : Propagation
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 10, 2010
Manuscript Accepted: November 30, 2010
Published: February 25, 2011

Mohamed A. Elshimy and Steve Hranilovic, "Non-line-of-sight single-scatter propagation model for noncoplanar geometries," J. Opt. Soc. Am. A 28, 420-428 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Shaw, A. M. Siegel, and M. L. Nischan, “Demonstration system and applications for compact wireless ultraviolet communications,” Proc. SPIE 5071, 241–252 (2003). [CrossRef]
  2. Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46, 67–73 (2008). [CrossRef]
  3. R. E. Huffman, Atmospheric Ultraviolet Remote Sensing(Academic, 1992).
  4. G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, 83–96 (2000). [CrossRef]
  5. G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 6231, 62310C (2006). [CrossRef]
  6. G. Chen, F. Abou-Galala, Z. Xu, and B. M. Sadler, “Experimental evaluation of LED-based solar blind NLOS communication links,” Opt. Express 16, 15059–15068 (2008). [CrossRef]
  7. G. Chen, F. Abou-Galala, H. D. Z. Xu, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17, 3929–3940 (2009). [CrossRef]
  8. Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18, 12226–12238 (2010). [CrossRef]
  9. G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18, 10500–10509(2010). [CrossRef]
  10. D. M. Reilly, “Atmospheric optical communications in the middle ultraviolet,” M.S. thesis (Massachusetts Institute of Technology, 1976).
  11. D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. 69, 464–470 (1979). [CrossRef]
  12. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8, 1964–1972 (1991). [CrossRef]
  13. H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A 26, 2466–2469 (2009). [CrossRef]
  14. H. Ding, Z. Xu, and B. M. Sadler, “A path loss model for non-line-of-sight ultraviolet multiple scattering channels,” EURASIP J. Wireless Commun. Network. 2010, 1–12 (2010). [CrossRef]
  15. L. Wang, Z. Xu, and B. M. Sadler, “Non-line-of-sight ultraviolet link loss in noncoplanar geometry,” Opt. Lett. 35, 1263–1265(2010). [CrossRef]
  16. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive (Addison-Wesley, 1981).
  17. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (Dover, 1972).
  18. J. M. Kahn, W. J. Krause, and J. B. Carruthers, “Experimental characterization of non-directed indoor infrared channels,” IEEE Trans. Commun. 43, 1613–1623 (1995). [CrossRef]
  19. S. Boyd and L. Vandenberghe, Convex Optimization(Cambridge University, 2008).
  20. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997). [CrossRef]
  21. I. M. Sobol, A Primer for the Monte Carlo Method (CRC, 1994).
  22. E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport (Wiley, 1984).
  23. A. F. Bielajew, Fundamentals of the Monte Carlo method for Neutral and Charged Particle Transport (2001), http://www-personal.umich.edu/~bielajew/MCBook/book.pdf.
  24. H. Kahn and T. E. Harris, “Estimation of particle transmission by random sampling,” in Monte Carlo Method, National Bureau of Standards, Applied Mathematics Series (U.S. Government Printing Office, 1951), Vol. 12, pp. 27–30.
  25. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and BiologySPIE Institutes for Advanced Optical Technologies (SPIE, 1989), Vol. IS 5, pp. 102–111.
  26. J. F. Briesmeister, ed., MCNP—A General Monte Carlo N-Particle Transport Code, Version 4C (Los Alamos National Laboratory, 2000).
  27. G. Marchuk, G. Mikhailov, M. Narazaliev, R. Darbinjan, B. Kargin, and B. Elepov, The Monte Carlo Methods in Atmospheric Optics (Springer-Verlag, 1980).
  28. K. F. Evans and A. Marshak, 3D Radiative Transfer for Cloudy Atmospheres (Springer-Verlag, 2005).
  29. The MathWorks, Inc., “Mathworks—Matlab and Simulink for technical computing,” http://www.mathworks.com.
  30. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  31. E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” Tech. Rep. 274(Aeronautical Research Associates of Princeton, 1976).
  32. A. S. Zachor, “Aureole radiance field about a source in a scattering-absorbing medium,” Appl. Opt. 17, 1911–1922 (1978). [CrossRef]
  33. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860–1862 (2008). [CrossRef]
  34. Wolfram Research, Inc., “Wolfram research: mathematica, technical and scientific software,” http://www.wolfram.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited