OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 434–440

Parallel two-step phase-shifting digital holograph microscopy based on a grating pair

Peng Gao, Baoli Yao, Irina Harder, Junwei Min, Rongli Guo, Juanjuan Zheng, and Tong Ye  »View Author Affiliations

JOSA A, Vol. 28, Issue 3, pp. 434-440 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (711 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical configuration for parallel two-step phase-shifting digital holographic microscopy (DHM) based on a grating pair is proposed for the purpose of real-time phase microscopy. Orthogonally circularly polarized object and reference waves are diffracted twice by a pair of gratings, and two parallel copies for each beams come into being. Combined with polarization elements, parallel two-step phase-shifting holograms are obtained. Based on the proposed configuration, two schemes of DHM, i.e., slightly off-axis and on-axis DHM, have been implemented. The slightly off-axis DHM suppresses the dc term by subtracting the two phase-shifting holograms from each other, thus the requirement on the off-axis angle and sampling power of the CCD camera is reduced greatly. The on-axis DHM has the least requirement on the resolving power of the CCD camera, while it requires that the reference wave is premeasured and its intensity is no less than 2 times the maximal intensity of the object wave.

© 2011 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.3170) Microscopy : Interference microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: September 30, 2010
Revised Manuscript: December 19, 2010
Manuscript Accepted: December 29, 2010
Published: February 25, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Peng Gao, Baoli Yao, Irina Harder, Junwei Min, Rongli Guo, Juanjuan Zheng, and Tong Ye, "Parallel two-step phase-shifting digital holograph microscopy based on a grating pair," J. Opt. Soc. Am. A 28, 434-440 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  2. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432(1983). [CrossRef] [PubMed]
  3. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416(2006). [CrossRef] [PubMed]
  4. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000). [CrossRef]
  5. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008). [CrossRef] [PubMed]
  6. W. J. Qu, K. Bhattacharya, C. Q. Choo, Y. J. Yu, and A. Asundi, “Transmission digital holographic microscopy based on a beam-splitter cube interferometer,” Appl. Opt. 48, 2778–2783 (2009). [CrossRef] [PubMed]
  7. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005). [CrossRef] [PubMed]
  8. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999). [CrossRef]
  9. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  10. G.-L. Chen, C.-Y. Lin, M.-K. Kuo, and C.-C. Chang, “Numerical suppression of zero-order image in digital holography,” Opt. Express 15, 8851–8856 (2007). [CrossRef] [PubMed]
  11. N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010). [CrossRef] [PubMed]
  12. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step only phase-shifting interferometry with optimized camera bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591(2009). [CrossRef] [PubMed]
  13. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34, 767–769 (2009). [CrossRef] [PubMed]
  14. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  15. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001). [CrossRef]
  16. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 2814273–4281 (2008). [CrossRef]
  17. J.-P. Liu and T.-C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34, 250–252 (2009). [CrossRef] [PubMed]
  18. R. Smythe and R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–364 (1984).
  19. C. L. Koliopoulos, “Simultaneous phase shift interferometer,” Proc. SPIE 1531, 119–127 (1992). [CrossRef]
  20. N. R. Sivakumar, W. K. Hui, K. Venkatakrishnan, and B. K. A. Ngoi, “Large surface profile measurement with instantaneous phase-shifting interferometry,” Opt. Eng. 42, 367–372 (2003). [CrossRef]
  21. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44, 6861–6868 (2005). [CrossRef] [PubMed]
  22. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183–D189 (2008). [CrossRef] [PubMed]
  23. T. Kakue, Y. Moritani, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography,” Opt. Express 18, 9555–9560 (2010). [CrossRef] [PubMed]
  24. G. Rodriguez-Zurita, C. Meneses-Fabian, N.-I. Toto-Arellano, J. F. Vázquez-Castillo, and C. Robledo-Sánchez, “One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms,” Opt. Express 16, 7806–7817 (2008). [CrossRef] [PubMed]
  25. N.-I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. Vazquez-Castillo, “Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one-shot phase-shifting interferometry,” Opt. Express 16, 19330–19341 (2008). [CrossRef]
  26. C. Meneses-Fabian, G. Rodriguez-Zurita, M. Encarnacion-Gutierrez, N.-I. Toto-Arellano, “Phase-shifting interferometry with four interferograms using linear polarization modulation and a Ronchi grating displaced by only a small unknown amount,” Opt. Commun. 2823063–3068 (2009). [CrossRef]
  27. G. Rodriguez-Zurita, N.-I. Toto-Arellano, C. Meneses-Fabian, and J. F. Vázquez-Castillo, “One-shot phase-shifting interferometry: five, seven, and nine interferograms,” Opt. Lett. 33, 2788–2790(2008). [CrossRef] [PubMed]
  28. C. Meneses-Fabian and G. Rodriguez-Zurita, “Optical tomography of transparent objects with phase-shifting interferometry and stepwise-shifted Ronchi ruling,” J. Opt. Soc. Am. A 23, 298–305 (2006). [CrossRef]
  29. T. Kiire, S. Nakadate, and M. Shibuya, “Simultaneous formation of four fringes by using a polarization quadrature phase-shifting interferometer with wave plates and a diffraction grating,” Appl. Opt. 47, 4787–4792 (2008). [CrossRef] [PubMed]
  30. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49, 2872–2878(2010). [CrossRef] [PubMed]
  31. M. Kujawinska and D. W. Robinson, “Multichannel phase-stepped holographic interferometry,” Appl. Opt. 27, 312–320(1988). [CrossRef] [PubMed]
  32. L. Chen, S. Yeh, A. Tapilouw, and J. Chang, “3-D surface profilometry using simultaneous phase-shifting interferometry,” Opt. Commun. 283, 3376–3382 (2010). [CrossRef]
  33. B. B. García, A. J. Moore, C. Pérez-López, L. Wang, and T. Tschudi, “Transient deformation measurement with electronic speckle pattern interferometry by use of a holographic optical element for spatial phase stepping,” Appl. Opt. 38, 5944–5947(1999). [CrossRef]
  34. E. N. Leith and R. Hershey, “Transfer functions and spatial filtering in grating interferometers,” Appl. Opt. 24, 237–239(1985). [CrossRef] [PubMed]
  35. G. J. Swanson and E. N. Leith, “Lau effect and grating imaging,” J. Opt. Soc. Am. 72, 552–555 (1982). [CrossRef]
  36. G. J. Swanson and E. N. Leith, “Analysis of the Lau effect and generalized grating imaging,” J. Opt. Soc. Am. A 2, 789–793 (1985). [CrossRef]
  37. J. Schwider, “Continuous lateral shearing interferometer,” Appl. Opt. 23, 4403–4409 (1984). [CrossRef] [PubMed]
  38. P. J. de Groot, “Grating interferometer for flatness testing,” Opt. Lett. 21, 228–230 (1996). [CrossRef] [PubMed]
  39. P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35, 712–714 (2010). [CrossRef] [PubMed]
  40. V. Ronchi, “On the phase grating interferometer,” Appl. Opt. 4, 1041–1042 (1965). [CrossRef]
  41. G. Vogl, “A phase grating interferometer,” Appl. Opt. 3, 1089–1089 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited