OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 441–447

Tunable optical transmission through gold slit arrays with Z-shaped channels

Suxia Xie, Hongjian Li, Xin Zhou, Haiqing Xu, and Zhimin Liu  »View Author Affiliations

JOSA A, Vol. 28, Issue 3, pp. 441-447 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1034 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transmission of a normally incident wave through an array of subwavelength gold film with Z-shaped slits has been explored by using the finite-difference time-domain method. The results show that the transmission of a thinner metal film perforated with a Z-shaped slit array behaves nearly the same as that of a thicker metal film perforated with straight slit array with the same central slit length, which is useful for the miniaturization of the optical device. It is also presented that the transmission of a Z-shaped slit array sensitively depends on the slit geometrical parameters. By adjusting the width and length of each section of the Z-shaped slit, noticeable magnitude modification of the transmission, redshift, and blueshift of the resonance modes is found, which is useful for the design of frequency-selective and sensor optical devices.

© 2011 Optical Society of America

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 29, 2010
Revised Manuscript: January 15, 2011
Manuscript Accepted: January 16, 2011
Published: February 25, 2011

Suxia Xie, Hongjian Li, Xin Zhou, Haiqing Xu, and Zhimin Liu, "Tunable optical transmission through gold slit arrays with Z-shaped channels," J. Opt. Soc. Am. A 28, 441-447 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  3. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  4. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef] [PubMed]
  5. C. Genet and T. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef] [PubMed]
  6. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley Interscience, 2000). [CrossRef]
  7. M. W. Docter, I. T. Young, O. M. Piciu, A. Bossche, P. F. A. Alkemade, P. M. van den Berg, and Y. Garini, “Measuring the wavelength-dependent divergence of transmission through sub-wavelength hole-arrays by spectral imaging,” Opt. Express 14, 9477–9482 (2006). [CrossRef] [PubMed]
  8. M. H. Chowdhury, J. M. Catchmark, and J. R. Lakowicza, “Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy,” Appl. Phys. Lett. 91, 103118 (2007). [CrossRef]
  9. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13, 4485–4491 (2005). [CrossRef] [PubMed]
  10. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Optical transmission at oblique incidence through a periodic array of sub-wavelength slits in a metallic host,” Opt. Express 14, 10220–10227 (2006). [CrossRef] [PubMed]
  11. A. Battula and S. C. Chen, “Extraordinary transmission in a narrow energy band for metallic gratings with converging–diverging channels,” Appl. Phys. Lett. 89, 131113 (2006). [CrossRef]
  12. A. Battula, Y. L. Lu, R. J. Knize, K. Reinhardt, and S. C. Chen, “Tunable transmission at 100 THz through a metallic hole array with a varying hole channel shape,” Opt. Express 15, 14629–14635 (2007). [CrossRef] [PubMed]
  13. W. Wang, Y. L. Lu, R. J. Knize, K. Reinhardt, and S. C. Chen, “Tunable and polarization-selective THz range transmission properties of metallic rectangular array with a varying hole channel shape,” Opt. Express 17, 7361–7367(2009). [CrossRef] [PubMed]
  14. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Transmission of microwaves through a stepped subwavelength slit,” Appl. Phys. Lett. 91, 251106 (2007). [CrossRef]
  15. D. R. Mason, D. K. Gramotnev, and K. S. Kim, “Wavelength-dependent transmission through sharp 90° bends in sub-wavelength metallic slot waveguides,” Opt. Express 18, 16139–16145 (2010). [CrossRef] [PubMed]
  16. T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659(2005). [CrossRef] [PubMed]
  17. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2005).
  18. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  19. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994). [CrossRef]
  20. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of the metal Al, Co, Cu, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119(1983). [CrossRef] [PubMed]
  21. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef] [PubMed]
  22. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002). [CrossRef]
  23. H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789 (2000). [CrossRef]
  24. H. Raether, Surface Plasmons, G.Hobler, ed. (Springer, 1988).
  25. Y. S. Jung, Z. J. Sun, and H. K. Kim, “Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays,” Appl. Phys. Lett. 87, 263116 (2005). [CrossRef]
  26. A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “The resonant electromagnetic fields of an array of metallic slits acting as Fabry–Perot cavities,” J. Appl. Phys. 99, 124903(2006). [CrossRef]
  27. P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68, 125404 (2003). [CrossRef]
  28. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815–3820 (2005). [CrossRef] [PubMed]
  29. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007). [CrossRef]
  30. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15, 6762–6767 (2007). [CrossRef] [PubMed]
  31. Y. H. Wang, Y. Q. Wang, Y. Zhang, and S. T. Liu, “Transmission through metallic array slits with perpendicular cuts,” Opt. Express 17, 5014–5022 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited