OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 465–474

Recovery of polarimetric Stokes images by spatial mixture models

Giorgos Sfikas, Christian Heinrich, Jihad Zallat, Christophoros Nikou, and Nikos Galatsanos  »View Author Affiliations

JOSA A, Vol. 28, Issue 3, pp. 465-474 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (765 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Bayesian approach for joint restoration and segmentation of polarization encoded images is presented with emphasis on both physical admissibility and smoothness of the solution. Two distinct models for the sought polarized radiances are used: (i) the polarized light at each site of the image is described by its Stokes vector, which directly follows a mixture of truncated Gaussians, explicitly assigning zero probability to inadmissible configurations and (ii) polarization at each site is represented by the coherency matrix, which is parameterized by a set of variables assumed to be generated by a spatially varying mixture of Gaussians. Application on real and synthetic images using the proposed methods assesses the pertinence of the approach.

© 2011 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(100.3190) Image processing : Inverse problems
(110.2960) Imaging systems : Image analysis
(120.5410) Instrumentation, measurement, and metrology : Polarimetry

ToC Category:
Image Processing

Original Manuscript: July 26, 2010
Revised Manuscript: December 14, 2010
Manuscript Accepted: January 6, 2011
Published: March 1, 2011

Giorgos Sfikas, Christian Heinrich, Jihad Zallat, Christophoros Nikou, and Nikos Galatsanos, "Recovery of polarimetric Stokes images by spatial mixture models," J. Opt. Soc. Am. A 28, 465-474 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Molina, J. Mateos, A. Katsaggelos, and M. Vega, “Bayesian multichannel image restoration using compound Gauss-Markov random fields,” IEEE Trans. Image Process. 12, 1642-1654(2003). [CrossRef]
  2. J. Chantas, N. Galatsanos, and A. Likas, “Bayesian restoration using a new hierarchical directional continuous edge image prior,” IEEE Trans. Image Process. 15, 2987-2997 (2006). [CrossRef] [PubMed]
  3. L. Bar, A. Brook, N. Sochen, and N. Kiryati, “Deblurring of color images corrupted by impulsive noise,” IEEE Trans. Image Process. 16, 1101-1111 (2007). [CrossRef] [PubMed]
  4. J. Zallat and C. Heinrich, “Polarimetric data reduction: a Bayesian approach,” Opt. Express 15, 83-96 (2007). [CrossRef] [PubMed]
  5. J. R. Valenzuela and J. A. Fessler, “Joint reconstruction of Stokes images from polarimetric measurements,” J. Opt. Soc. Am. A 26, 962-968 (2009). [CrossRef]
  6. J. R. Valenzuela, J. A. Fessler, and R. G. Paxman, “Joint estimation of Stokes images and aberrations from phase-diverse polarimetric measurements,” J. Opt. Soc. Am. A 27, 1185-1193(2010). [CrossRef]
  7. D. LeMaster and S. Cain, “Multichannel blind deconvolution of polarimetric imagery,” J. Opt. Soc. Am. A 25, 2170-2176(2008). [CrossRef]
  8. J. Zallat, C. Collet, and Y. Takakura, “Clustering of polarization-encoded images,” Appl. Opt. 43, 283-292 (2004). [CrossRef] [PubMed]
  9. G. Sfikas, C. Heinrich, J. Zallat, C. Nikou, and N. Galatsanos, “Joint recovery and segmentation of polarimetric images using a compound mrf and mixture modeling,” in Proceedings of the IEEE International Conference on Image Processing (ICIP 09) (IEEE, 2009), pp. 3901-3904. [CrossRef]
  10. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Statist. Soc. B 39, 1-38 (1977).
  11. K. Lange, Optimization (Springer, 2004).
  12. G. Sfikas, C. Nikou, N. Galatsanos, and C. Heinrich, “Spatially varying mixtures incorporating line processes for image segmentation,” J. Math Imaging Vis. 36, 91-110 (2010). [CrossRef]
  13. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Machine Intell. PAMI-6, 721-741 (1984). [CrossRef]
  14. C. Nikou, N. Galatsanos, and A. Likas, “A class-adaptive spatially variant mixture model for image segmentation,” IEEE Trans. Image Process. 16, 1121-1130 (2007). [CrossRef] [PubMed]
  15. G. McLachlan, Finite Mixture Models (Wiley-Interscience, 2000). [CrossRef]
  16. C. M. Bishop, Pattern Recognition and Machine Learning. (Springer, 2006).
  17. B. Aiazzi, L. Alparone, A. Barducci, S. Baronti, and I. Pippi, “Estimating noise and information of multispectral imagery,” Opt. Eng. 41, 656-668 (2002). [CrossRef]
  18. J. Zallat, S. Aïnouz, and M. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A Pure Appl. Opt. 8, 807-814 (2006). [CrossRef]
  19. J. Zallat, C. Heinrich, and M. Petremand, “A Bayesian approach for polarimetric data reduction : the Mueller imaging case,” Opt. Express 16, 7119-7133 (2008). [CrossRef] [PubMed]
  20. G. Birkhoff and S. MacLane, A Survey of Modern Algebra (McMillan, 1953).
  21. J. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112-147 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited