OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 475–482

Geometric phase: two triangles on the Poincaré sphere

Piotr Kurzynowski, Władysław A. Woźniak, and Małgorzata Szarycz  »View Author Affiliations


JOSA A, Vol. 28, Issue 3, pp. 475-482 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000475


View Full Text Article

Enhanced HTML    Acrobat PDF (628 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The method of obtaining the dynamic and geometric part of the phase introduced by a birefringent medium in two kinds of interferometric experiments is presented. The mathematical formulas for the phases obtained using Jones formalism are visualized with the specific triangles on the Poincaré sphere. Generally, these triangles are similar to those used in the Pancharatnam’s original construction developed by Courtial to calculate the Pancharatnam geometric phase for the light passing through a single birefringent plate. In these graphical constructions following Courtial’s idea, we used the points representing both of the birefringent medium’s eigenvectors. This allowed the most intuitive explanation of the mechanism of dividing the whole phase shift introduced by the birefringent plate into two different parts: dynamical and geometrical. The considered constructions were used as a description of two simple experiments with a birefringent medium in a Mach–Zehnder interferometer and a polariscopic setup. The experimental verifications of our theoretical predictions should convince the reader of the correctness of the assumed model.

© 2011 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.1440) Physical optics : Birefringence
(260.3160) Physical optics : Interference
(260.5430) Physical optics : Polarization
(350.1370) Other areas of optics : Berry's phase

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 9, 2010
Revised Manuscript: December 21, 2010
Manuscript Accepted: January 5, 2011
Published: March 1, 2011

Citation
Piotr Kurzynowski, Władysław A. Woźniak, and Małgorzata Szarycz, "Geometric phase: two triangles on the Poincaré sphere," J. Opt. Soc. Am. A 28, 475-482 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-3-475


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Hariharan, “The geometric phase,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2005), Vol. 48, pp. 149-201. [CrossRef]
  2. S. Pancharatnam, “Generalized theory of interference and its applications. Part I. Coherent pencils,” Proc. Indian Acad. Sci. A 44, 247-262 (1956).
  3. S. Pancharatnam, Collected Works (Oxford University, 1975).
  4. M. V. Berry, “The adiabatic phase and Pancharatnam's phase for polarized light,” J. Mod. Opt. 34, 1401-1407 (1987). [CrossRef]
  5. M. V. Berry, “Anticipation of the geometric phase,” Phys. Today 43, 34-40 (1990). [CrossRef]
  6. G. D. Love, “The unbounded nature of geometrical and dynamical phases in polarization optics,” Opt. Commun. 131, 236-240(1996). [CrossRef]
  7. A. G. Wagh, V. C. Rakhecha, J. Summhammer, G. Badurek, H. Weinfurter, B. E. Allman, H. Kaiser, K. Hamacher, D. L. Jacobson, and S. A. Werner, “Experimental separation of geometric and dynamical phases using neutron interferometry,” Phys. Rev. Lett. 78, 755-759 (1997). [CrossRef]
  8. R. Bhandari, “SU(2) phase jump and geometrical phases,” Phys. Lett. A 157, 221-225 (1991). [CrossRef]
  9. R. Bhandari and J. Samuel, “Observation of topological phase by use of a laser interferometer,” Phys. Rev. Lett. 60, 1211-1213(1988). [CrossRef] [PubMed]
  10. K. Y. Bliokh, “Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium,” J. Opt. A Pure Appl. Opt. 11, 094009 (2009). [CrossRef]
  11. T. H. Chyba, L. J. Wang, L. Mandel, and R. Simon, “Measurement of the Pancharatnam phase for a light beam,” Opt. Lett. 13, 562-564 (1988). [CrossRef] [PubMed]
  12. S. Ramashesan, “The Poincaré sphere and the Pancharatnam phase--some historical remarks,” Curr. Sci. 59, 1154-1158 (1990).
  13. A. G. Wagh and V. C. Rakhecha, “On measuring the Pancharatnam phase. I. Interferometry,” Phys. Lett. A 197, 107-111 (1995). [CrossRef]
  14. M. V. Berry and S. Klein, “Geometric phases from stacks of crystal plates,” J. Mod. Opt. 43, 165-180 (1996). [CrossRef]
  15. P. Hariharan, S. Mujumdar, and H. Ramachandran,” A simple demonstration of Pancharatnam phase as a geometric phase,” J. Mod. Opt. 46, 1443-1446 (1999). [CrossRef]
  16. E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, and R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 1-4 (2003). [CrossRef]
  17. Y. Ben-Aryeh, “Berry and Pancharatnam topological phases of atomic and optical systems,” J. Opt. B: Quantum Semiclass. Opt. 6, R1-R18 (2004). [CrossRef]
  18. N. Murakami, Y. Kato, N. Baba, and T. Ishigaki, “Geometric phase modulation for the separate arms in nulling interferometer,” Opt. Commun. 237, 9-15 (2004). [CrossRef]
  19. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Manipulation of the Pancharatnam phase in vectorial vortices,” Opt. Express 14, 4208-4220 (2006). [CrossRef] [PubMed]
  20. T. D. Visser, T. van Dijk, H. F. Schouten, and W. Ubachs, “The Pancharatnam-Berry phase for non-cyclic polarization changes,” Opt. Express 18, 10796-10804 (2010). [CrossRef] [PubMed]
  21. J. Courtial, “Wave plates and the Pancharatnam phase,” Opt. Commun. 171, 179-183 (1999). [CrossRef]
  22. P. Yeh and C. Gu, “Jones matrix formulation,” in Optics of Liquid Crystal Displays (Wiley, 2010), Chap. 4.1, pp. 173-289.
  23. H. Schmitzer, S. Klein, and W. Dultz, “An experimental test of the path dependency of Pancharatnam's geometric phase,” J. Mod. Opt. 45, 1039-1047 (1998). [CrossRef]
  24. R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281, 1-64 (1997). [CrossRef]
  25. M. Martinelli and P. Vavassori, “A geometric (Pancharatnam) phase approach to the polarization and phase control in the coherent optics circuits,” Opt. Commun. 80, 166-176(1990). [CrossRef]
  26. W. A. Woźniak and P. Kurzynowski, “Compact spatial polariscope for light polarization state analysis,” Opt. Express 16, 10471-10479 (2008). [CrossRef] [PubMed]
  27. W. A. Woźniak and M. Banach, “Measurements of elliptically birefringent media parameters in optical vortex birefringence compensator,” Appl. Opt. 47, 3390-3396 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited