OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 517–522

Speckle properties of the logarithmically transformed signal in optical coherence tomography

Peng Lee, Wanrong Gao, and Xianling Zhang  »View Author Affiliations


JOSA A, Vol. 28, Issue 4, pp. 517-522 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000517


View Full Text Article

Enhanced HTML    Acrobat PDF (944 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss the statistical properties of speckle of the logarithmically transformed signal in optical coherence tomography (OCT) both theoretically and experimentally. OCT signals of Intralipid solution with different volume particle concentrations ρ (correspondingly, scattering coefficient μ s ranges from 1.25 to 25.11 mm 1 ) were measured and analyzed under two different focusing conditions [numerical apertures (NAs) of the objective lens of 0.13 and 0.25]. We found that the effect of the speckle noise can be suppressed by displaying OCT images in the logarithmic scale and by using the objective lens with a higher NA. We also found that the speckle properties are correlated with the scattering properties of the sample, which may be used to characterize the scattering properties of biological tissue. The simulated OCT image and the in vitro OCT image of a rat liver are used as examples to demonstrate the feasibility of the method.

© 2011 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.5820) Scattering : Scattering measurements

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 17, 2010
Revised Manuscript: January 13, 2011
Manuscript Accepted: January 17, 2011
Published: March 7, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Peng Lee, Wanrong Gao, and Xianling Zhang, "Speckle properties of the logarithmically transformed signal in optical coherence tomography," J. Opt. Soc. Am. A 28, 517-522 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-4-517


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001). [CrossRef] [PubMed]
  3. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27, 45–88 (2008). [CrossRef]
  4. J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995). [CrossRef] [PubMed]
  5. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001). [CrossRef] [PubMed]
  6. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004). [CrossRef] [PubMed]
  7. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005). [CrossRef] [PubMed]
  8. M. Mogensen and G. B. Jemec, “Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies,” Dermatol. Surg. 33, 1158–1174 (2007). [CrossRef] [PubMed]
  9. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105(1999). [CrossRef]
  10. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  11. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995). [CrossRef]
  12. Y. Pan, R. Birngruber, and R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt. 36, 2979–2983 (1997). [CrossRef] [PubMed]
  13. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997). [CrossRef]
  14. K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006). [CrossRef] [PubMed]
  15. T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett. 31, 190–192 (2006). [CrossRef] [PubMed]
  16. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9–15 (2008). [CrossRef]
  17. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569(2003). [CrossRef] [PubMed]
  18. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22, 593–596 (2005). [CrossRef]
  19. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25, 545–547 (2000). [CrossRef]
  20. J. W. Goodman, Statistical Optics (Wiley, 2000).
  21. A. E. Desjardins, B. J. Vakoc, A. Bilenca, G. J. Tearney, and B. E. Bouma, “Estimation of the scattering coefficients of turbid media using angle-resolved optical frequency-domain imaging,” Opt. Lett. 32, 1560–1562 (2007). [CrossRef] [PubMed]
  22. H. H. Arsenault and G. April, “Properties of speckle integrated with a finite aperture and logarithmically transformed,” J. Opt. Soc. Am. 66, 1160–1163 (1976). [CrossRef]
  23. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514(1991). [CrossRef] [PubMed]
  24. A. Giusto, R. Saija, M. A. Iatì, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt. 42, 4375–4380 (2003). [CrossRef] [PubMed]
  25. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023–4030 (2003). [CrossRef] [PubMed]
  26. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001). [CrossRef] [PubMed]
  27. R. C. Weast, Handbook of Chemistry and Physics (CRC, 1978).
  28. http://omlc.ogi.edu/calc/mie_calc.html.
  29. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993). [CrossRef] [PubMed]
  30. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008). [CrossRef] [PubMed]
  31. Z. Li, H. Li, Y. He, S. Cai, and S. Xie, “A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues,” Phys. Med. Biol. 53, 5859–5866 (2008). [CrossRef] [PubMed]
  32. P. Parsa, S. L. Jacques, and N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330(1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited