OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 523–533

Multiple annular linear diffractive axicons

Emilie Bialic and Jean-Louis de Bougrenet de la Tocnaye  »View Author Affiliations


JOSA A, Vol. 28, Issue 4, pp. 523-533 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000523


View Full Text Article

Enhanced HTML    Acrobat PDF (1798 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a chromatic analysis of multiple annular linear diffractive axicons. Large aperture axicons are optical devices providing achromatic nondiffracting beams, with an extended depth of focus, when illuminated by a white light source, due to chromatic foci superimposition. Annular apertures introduce chromatic foci separation, and because chromatic aberrations result in focal segment axial shifts, polychromatic imaging properties are partially lost. We investigate here various design parameters that can be used to achieve color splitting, filtering, and combining using these properties. In order to improve the low-power efficiency of a single annular axicon, we suggest a spatial multiplexing of concentric annular axicons with different sizes and periods we call multiple annular aperture diffractive axicons (MALDAs). These are chosen to maintain focal depths while enabling color imaging with sufficient diffraction efficiency. Illustrations are given for binary phase diffractive axicons, considering technical aspects such as grating design wavelength and phase dependence due to the grating thickness.

© 2011 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1380) Diffraction and gratings : Binary optics
(050.1950) Diffraction and gratings : Diffraction gratings
(110.6760) Imaging systems : Talbot and self-imaging effects

ToC Category:
Diffraction and Gratings

History
Original Manuscript: November 24, 2010
Manuscript Accepted: December 27, 2010
Published: March 9, 2011

Citation
Emilie Bialic and Jean-Louis de Bougrenet de la Tocnaye, "Multiple annular linear diffractive axicons," J. Opt. Soc. Am. A 28, 523-533 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-4-523


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954). [CrossRef]
  2. J. Durnin, “Exact solutions for non-diffracting beams. I: The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  3. J. Dyson, “Circular and spiral diffraction gratings,” Proc. R. Soc. Lond. A 248, 93–106 (1958). [CrossRef]
  4. A. V. Goncharov, A. Burvall, and C. Dainty, “Systematic design of an anastigmatic lens axicon,” Appl. Opt. 46, 6076–6080(2007). [CrossRef] [PubMed]
  5. G. Mikula, A. Kolodziejczyk, M. Makowski, C. Prokopowicz, and M. Sypek, “Diffractive elements for imaging with extended depth of focus,” Opt. Eng. 44, 058001 (2005). [CrossRef]
  6. G. Druart, J. Taboury, N. Guérineau, R. Haïdat, H. Sauer, A. Kattnig, and J. Primot, “Demonstration of image-zooming capability for diffractive axicons,” Opt. Lett. 33, 366–368(2008). [CrossRef] [PubMed]
  7. J. L. Martinez, A. Martinez-Garcia, and I. Moreno, “Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel,” Appl. Opt. 48, 911–918 (2009). [CrossRef] [PubMed]
  8. L. Niggl, T. Lanzl, and M. Maier, “Properties of Bessel beams generated by periodic grating of circular geometry,” J. Opt. Soc. Am. A 14, 27–33 (1997). [CrossRef]
  9. V. Kettunen, J. Simonen, M. Kuittinen, O. Ripoll, and H. P. Herzig, “Diffractive elements designed to suppress unwanted zero order due to surface depth error,” in Diffractive Optics and Micro-Optics, R.Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper DMD3.
  10. E. Bialic, M. Kessels, I. Hardy, P. Grosso, K. Heggarty, T. Torrès, and P. Pellat-Finet, “Phototraceur UV à micromiroirs pour fonctions optiques intégrées diffractives,” in Proceedings of JNOG, (Journée Nationale d'Optique Guidée, 2008), pp. 128–130.
  11. Z. Jaroszewicz, J. F. Roman Dopazo, and C. Gomez-Reino, “Uniformization of the axial intensity of diffraction axicons by polychromatic illumination,” Appl. Opt. 35, 1025–1031 (1996). [CrossRef] [PubMed]
  12. C. J. Zapata-Rodriguez and A. Sanchez-Losa, “Three dimensional field distribution in the focal region of low-Fresnel number axicon,” J. Opt. Soc. Am. A 23, 3016–3026 (2006). [CrossRef]
  13. D. Mas, J. Espinosa, J. Perez, and C. Illueca, “Three dimensional analysis of chromatic aberration in diffractive elements with extended depth of focus,” Opt. Express 15, 17842–17854 (2007). [CrossRef] [PubMed]
  14. V. N. Mahajan, “Uniform versus Gaussian beams: a comparison of the effects of diffraction, obscuration, and aberrations,” J. Opt. Soc. Am. A 3, 470–485 (1986). [CrossRef]
  15. G. Indebetouw, “Non-diffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152(1989). [CrossRef]
  16. W. T. Wilford, “Use of annular aperture to increase focal depth,” J. Opt. Soc. Am. 50, 749–753 (1960). [CrossRef]
  17. J. E. Harvey and J. L. Forgham, “The spot of Arago: new relevance for an old phenomenon,” Am. J. Phys. 52, 243–247 (1984). [CrossRef]
  18. E. Bialic, M. Piponnier, N. Guérineau, G. Druart, and J. L. de Bougrenet, “Spectro-imaging properties of annular diffractive axicons,” presented at the 5th EOS Topical Meeting on Advanced Imaging Techniques, Engelberg, Switzerland, 29 June–2 July 2010.
  19. J. Perez, J. Espinosal, C. Illuecal, C. Vasquez, and I. Moreno, “Real time modulable multifocality through annular optical elements,” Opt. Express 16, 5095–5106 (2008). [CrossRef] [PubMed]
  20. M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16, 11618–11623 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited